Модель Тейла-Вейджа

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Определение

Пусть задан временной ряд: y_i \dots y_t,\; y_i \in R.

Необходимо решить задачу прогнозирования временного ряда.

Модель Тейла-Вейджа (Theil,Wage) - усложненная модель Хольта, учитывающая сезонность и аддитивный тренд, в отличии от модели Модель Хольта-Уинтерса аддитивно включает линейный тренд, что оправдано при решении некоторых задач.

\hat{y}_{t+d}=a_t + d b_t \Theta_{t + (d MOD s) - s}

a_t=\alpha_1 \left( y_t - \Theta_{t-s} \right) + \left(1-\alpha_1 \right)\left(a_{t-1} +b_{t-1}\right);

b_t=\alpha_3 \left( a_t-a_{t-1} \right) + \left(1-\alpha_3 \right)b_{t-1};

\Theta_t=\alpha_2 \left( y_t-a_t \right) + \left(1-\alpha_2 \right) \Theta_{t-s};

где s - период сезонности,\Theta_i, \; i \in 0 \dots s-1 - сезонный профиль, b_t - параметр тренда, a_t - параметр прогноза, очищенный от влияния тренда и сезонности.

Выбирать параметры \alpha_1,\; \alpha_2, \; \alpha_3 \in \left( 0,1 \right) предлагается экспериментально, используя метод минимизации среднеквадратичной ошибки. Проблема оптимального выбора параметров и пути её решения описаны в книге Лукашина.

Литература

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.

Theil H., Wage S. Some observations on adaptive forecasting // Management Science. - 1964. - Vol. 10. - Mb 2.

Ссылки

Модель Брауна — экспоненциальное сглаживание.

Модель Хольта - учитывается линейный тренд без сезонности.

Модель Хольта-Уинтерса — учитываются мультипликативный тренд и сезонность.

Анализ адекватности адаптивных моделей

Личные инструменты