Пробит-анализ
Материал из MachineLearning.
Пробит анализ (probit analysis, normit analysis) — вид регрессионного анализа, используется для определения влияния колличественного признака на бинарный отклик. Относится к классу обобщённых линейных моделей.
Другие названия: Пробит регрессия(probit regression), пробит модель(probit model).
Содержание |
Примеры задач
Пример 1.Токсикология.
Paccмотрим выборку , где - доза токсичного вещества, равна 1, если живые существа умерли от дозы . Необходимо определить вероятность смерти.
Пример 2.Страхование жизни.
Paccмотрим выборку , где - возраст человека, равна 1, если человек в возрасте умер. Необходимо определить вероятность смерти.
Пример 3.Эконометрика.
Paccмотрим выборку , где - цена продукции, равна 1, если продукцию по цене купили. Необходимо определить вероятность покупки при данной цене.
Описание критерия
Рассмотрим выборку , где - колличественный признак , бинарный отклик . Найдём вероятность .
Для решения задачи аппроксимируем функцию распределения вероятностей нормальным распределением.
Пробит для - это решение уравнения , где - функция нормального распределения.
Рассмотрим множество пар , где . Если модель "угадана" хорошо, то зависимость - линейная, т.е.
- . (1)
- .
А это стандартная задача линейной регрессии.
Если найдены, то
- , (2)
- ,
где - математическое ожидание, - дисперсия.
Из (1),(2) находим формулы для и :
- ,
- .
Используя определение пробита и формулы для можно вычислить функцию распределения .
История
Идея пробит-анализа впервые была опубликована Блиссом в 1934 г. в статье о влиянии пестицидов на процент убитых вредителей. Блисс предложил для учёта процента убитых вредителей использовать вероятностный блок - probability unit (или probit). Данное им определение немного отличалось использованного здесь(не было сдвига на 5). Окончательно определение пробит дал Джон Финни.
См. также
Ссылки
- Probit model (Wikipedia).