Участник:Denis Kochedykov
Материал из MachineLearning.
Кочедыков Денис Алексеевич, Forecsys, ВЦ РАН(соискатель).
Научный руководитель Воронцов К.В..
|
Содержание |
Публикации
Тезисы
- Кочедыков Д.А., Ивахненко А.А., Воронцов К.В. "Система кредитного скоринга на основе логических алгоритмов классификации" // Математические методы распознавания образов-12. — М.: МАКС Пресс, 2005. — С. 349–353.
- Кочедыков Д.А., Воронцов К.В. "О поиске оптимальных сочетаний управляющих параметров в логических алгоритмах классификации" //Тезисы докладов международной конференции «Интеллектуализация обработки информации» (ИОИ-2006) - Симферополь, 2006 - С. 117–119.
- Кочедыков Д.А., Ивахненко А.А., Воронцов К.В. "Применение логических алгоритмов классификации в задачах кредитного скоринга и управления риском кредитного портфеля банка" // Математические методы распознавания образов-13. — М.: МАКС Пресс, 2007. — С. 484–488.
- Кочедыков Д.А., Воронцов К.В. "К определению понятия информативности логических закономерностей в задачах классификации" //Труды 50-ой научной конференции МФТИ «Современные проблемы фундаментальных и прикладных наук» - 2008г - т.2 - с 100-102
- Кочедыков Д.А., "Комбинаторные оценки обобщающей способности методов обучения по прецедентам с расслоением по наблюдаемой частоте ошибок" //Труды 51-ой научной конференции МФТИ «Современные проблемы фундаментальных и прикладных наук» - 2009г
Статьи
Структура кандидатской диссертации
- Введение
- Актуальность
- Новизна: учет эффекта сходства и расслоения в оценках обобщающей способности в комбинаторном подходе
- Апробация: ИОИ-2008, МФТИ-2007, МФТИ-2008, ММРО-2009(предстоит), семинары ВЦ РАН(предстоит)
- Содержание работы по главам и личный вклад.
- Обзорная часть
- Проблема обобщающей способности. Обзор современных результатов: Вапника, Лэнгфорда, МакАллистера, и т.д.
- Слабая вероятностная аксиоматика
- Постановка задачи диссертации (пока не до конца ясна)
- Некоторые известные оценки, переведенные в слабую аксиоматику (содержательная глава №1)
- Вапник
- Лэнгфорд
- Силл
- Нужен ли здесь перевод еще каких то известных оценок в слабую аксиоматику?
- Эффект сходства алгоритмов при оценивании вероятности переобучения (содержательная глава №2. основная.)
- Связное семейство - верхняя оценка вероятности возникновения переобучения посредством неравенства типа Бонферрони
- Цепочка алгоритмов без расслоения
- Точное значение вероятности возникновения переобучения в цепочке
- Точное значение вероятности пеореобучения метода МЭР
- Семейство, состоящее из цепочек без расслоения
- Верхняя оценка вероятности переобучения метода МЭР
- Верхняя оценка вероятности возникновения переобучения
- Эксперименты
- Сравнение различных оценок
Состояние работы на текущий момент
- В обзорной части
- Частично есть описание постановки задачи.
- Естественно, есть описание слабой вероятностной аксиоматики.
- Отсутствует обзор современного состояния по теме.
- В главе про перевод известных оценок в комбинаторный вид
- Естественно, есть стандартная оценка Вапника.
- Из Лэнгфорда есть оценки Occam Razor, Shell, можно считать, что есть Microchoice, т.к. он переводится тривиально.
- Можно считать, что есть оценка Силла для связных семейств - разобрался, как она устроена, теперь легко можно ее записать в слабой аксиоматике.
- Других оценок нет.
- В главе про эффект сходства
- Есть верхняя оценка вероятности возникновения переобучения в связном семействе неравенством Бонферрони.
- Остального еще нет.
Ближайший план работы
- Получить вероятность переобучения метода МЭР для худшего случая цепочки без расслоения. Это будет оценка с одновременным учетом и метода обучения и структуры сходства семейства.
- Получить вероятность возникновения переобучения в цепочке без расслоения. Это будет оценка с полным учетом структуры сходства семейства, но без учета метода обучения.
- Сравнить эти две последние оценки и оценку union bound(Вапник) - определить какой сравнительный эффект дают учет 1) структуры сходства и 2) метода обучения.
- Обычным union bound'ом получить для каждой из последних двух точных оценок верхнюю оценку для семейства состоящего из цепочек без расслоения. (здесь пока не совсем понятна практическая применимость - ведь слои в реальных семействах не обязательно представляют из себя цепочки).
Для использования union bound'а нужно знать профиль семейства - число алгоритмов в каждом слое(цепочке). Его можно оценить по наблюдаемому профилю семейства так, как это делается в observable shell Лэнгфорда.