EM-алгоритм с последовательным добавлением компонент (пример)
Материал из MachineLearning.
|
EM-алгоритм с последовательным добавлением компонент — метод нахождения функции плотности объектов, представляющей смесь распределений. В тех случаях, когда "форму" класса не удаётся описать каким-либо одним распределением, можно попробовать описать её смесью распределений, каждое из которых описывается функцией правдоподобия .
- априорная вероятность -й компоненты. Функции правдоподобия принадлежат параметрическому семейству распределений и отличаются только значениями параметра
Задача разделения смеси заключается в том, чтобы, имея выборку случайных и независимых наблюдений из смеси , зная число и функцию , оценить вектор параметров
В данной статье рассматривается смесь гауссовских распределений выборки. Предполагается, что произвольную функцию распределения можно представить в виде их линейной комбинации. Количество компонент смеси, т.е. число гауссианов в линейной комбинации, произвольно.
EM-алгоритм был предложен и исследован М.И.Шлезингером как инструмент для самопроизвольной классификации образов. Область его применения чрезвычайно широка: дискриминантный анализ, кластеризация, восстановление пропусков в данных, обработка сигналов и изображений. Алгоритм решает задачу исключающего или (XOR)
Постановка задачи
Задана выборка , в которой = - множество объектов, = - множество ответов. Предполагается, что на множестве объектов задана плотность распределения , представленная в виде смеси гауссиан с параметрами и ,
Задача разделения смеси заключается в том, чтобы, имея выборку случайных и независимых наблюдений из смеси оценить вектор параметров доставляющий максимум функции правдоподобия
Алгоритм отыскания оптимальных параметров
Оптимальные параметры отыскиваются последовательно с помощью EM-алгоритма. Идея заключается во введении вспомогательного вектора скрытых переменных , обладающего двумя замечательными свойствами. С одной стороны, он может быть вычислен, если известны значения вектора параметров , с другой стороны, поиск максимума правдоподобия сильно упрощается, если известны значения скрытых переменных. EM-алгоритм состоит из итерационного повторения двух шагов. На E-шаге вычисляется ожидаемое значение (expectation) вектора скрытых переменных по текущему приближению вектора параметров . На М-шаге решается задача максимизации правдоподобия (maximization) и находится следующее приближение вектора по текущим значениям векторов и .
Если число компонент смеси заранее неизвестно, то применяется EM-алгоритм с последовательным добавлением компонент. Предположим, что смесь содержит одну компоненту () и проделаем алгоритм EM(). Найдем плохо классифицированные элементы: Если функция правдоподобия на объекте меньше своего максимального значения в R раз, то добавим элемент ко множеству U. Параметр R выбирается на основании эвристических соображений, как правило . Множество U полагается пустым и увеличивается по мере добавления в него элементов. Если размер U оказался больше , то считаем, что текущее распределение плохо описывает смесь. Текущее распределение определяется только числом компонент . Увеличим его на единицу и запустим еще раз EM(). Алгоритм остановится, когда число плохо классифицированных объектов будет меньше . Этот параметр характеризует количество элементов, по которому можно восстановить гауссовское распределение. Как правило
- Вход:
Выборка ; - максимальный допустимый разброс правдоподобия объектов; - минимальная длина выборки, по которой можно восстановить плотность; - параметр критерия останова;
- Выход:
- число компонент смеси;
- Алгоритм
1. начальное приближение - одна компонента:
2. для всех
3. выделить объекты с низким правдоподобием
4. Если то выход из цикла по
5. Начальное приближение для компоненты:
6.
Вычислительный эксперимент
Алгоритм тестируется на модельных и реальных данных.
Пример 1
Рассмотрим пример на модельных данных. Выборка состоит из четырех классов. Красный класс представляет собой смесь двух гауссовских распределений с диагональной и недиагональной матрицами ковариации. Остальные классы являются одним гауссовским рапределением. Дисперсия зеленого класса меньше дисперсий остальных, поэтому его элементы находятся ближе к центру. Дисперсия бирюзовых по одной координате больше, чем по другой, в результате чего класс визуально вытянулся. Центры классов располагаются близко, некоторые классы линейно неразделимы.
[X1, Y1] = gengaussdata(150, [0;0], [1/4,1/2]); [X2, Y2] = gengaussdata(150, [4;0], [1 5/6;5/6 1]); [X4, Y4] = gengaussdata(120, [2;4], [1/10;1/10]); [X3, Y3] = gengaussdata(200, [-2,2], [1/3, 1/3]); [X5, Y5] = gengaussdata(200, [2,2], [1.25, 1/20]); X=[X1;X2;X3;X4;X5]; %Y are answers (numbers of classes) Y=[Y1;Y2;Y3+1;Y4+2;Y5+3]; hold off drawdata(X,Y,'*'); %learning algorithm [W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,40,0.001]) %testing and geting answers from algorithm [Yanswer] = emtest(X, M, Sigma, Ytheta); drawdata(X,Yanswer,'o'); %printing centers of classes according to algorithm decision printcenters(M);
Истинное распределение классов показано на рисунке слева. Одинаковым цветом помечены элементы одного класса. Как можно заметить, некоторые представители "красных", "бирюзовых" и "синих" перемешались.
Качество обучения алгоритма проверяется на той же выборке. На правом рисунке кружками показаны полученные ответы, цвет отвечает за принадлежность к соответствующему классу. Центры классов, отмечены черным кружками. Алгоритм нашел восемь гауссовских распределений вместо четырех, причем одна из красных компонент описывается сразу 4 гауссианами, в то время как остальные компоненты выборки - одной. Этот факт говорит о том, что одна гауссиана плохо приближает данное распределение, и, для уменьшения числа ошибок, следует приблизить её большим числом гауссиан. Алгоритм допустил 16 ошибок, что на выборке из 820 элементов составляет менее 2%.
Пример 2
В качестве второго примера возьмем два плохо разделимых класса. Центры классов находятся на расстоянии меньшем дисперсии каждого из них. Можно наблюдать синие элементы, расположенные ближе к центру красного класса, чем к центру своего.
Алгоритм выделил четыре гауссовских распределения в синем классе. Благодаря этому, хорошо классифицировались некоторые синие элементы, находящиеся ближе к красному классу.
Ирисы Фишера
Проверку алгоритма проведем на классической задаче: Ирисы Фишера Объектами являются три типа ирисов: setosa, versicolor, virginica
У каждого объекта есть четыре признака: длина лепестка, ширина лепестка, длина чашелистика, ширина чашелистика. Для удобства визуализации результатов будем использовать первые два признака.
load 'iris2.data' X = iris2(:,[3,4]); Y = [ones([50,1]);2*ones([50,1]);3*ones([50,1])]; hold off drawdata(X,Y,'*'); title('Irises classification') xlabel('petal width, cm'); ylabel('petal length, cm'); legend('Iris Setosa','Iris Versicolour','Iris Virginica','Location','NorthWest'); [W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,20,0.0005]) [Yanswer] = emtest(X, M, Sigma, Ytheta); drawdata(X,Yanswer,'o')
Алгоритм хорошо отделил ирисы setosa от остальных, но допустил 30% ошибок при разделении ирисов versicolor и virginica. Это произошло потому, что алгоритм изначально решал задачу кластеризации и лишь потом задачу классификации, приписывая каждому кластеру номер наиболее хорошо приближаемого им класса. Для разделения последних двух классов можно использовать линейные алгоритмы классификации, либо решать с помощью EM-алгоритма, используя все четыре признака.
Исходный код
Скачать листинги алгоритмов можно здесь EMk.m, emlearn.m, emtest.m
Смотри также
Литература
- К. В. Воронцов, Лекции по статистическим (байесовским) алгоритмам классификации
- Bishop C. - Pattern Recognition and Machine Learning (Springer, 2006)
- The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay includes simple examples of the EM-algorithm such as clustering using the soft K-means algorithm, and emphasizes the variational view of the EM-algorithm.
- Журавлёв, Юрий Иванович Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. 1978 Т. 33.С. 5–68.
- Jordan M. I., Xu L. Convergence results for the EM algorithm to mixtures of experts architectures: Tech. Rep. A.I. Memo No. 1458: MIT, Cambridge, MA, 1993.
- Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. - Киев: Наукова думка, 2004.
- Шлезингер М. И. О самопроизвольном различении образов // Читающие автоматы. - Киев, Наукова думка, 1965
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |