Выбор оптимального алфавита марковских моделей для распознавания речи (отчет)

Материал из MachineLearning.

Версия от 15:46, 15 октября 2009; Danvik05 (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Введение в проект

Описание проекта

Цель проекта

Цель проекта ― выбор оптимального набора марковских моделей для распознавания речи.

Обоснование проекта

Полученные данные могут быть использованы в качестве словаря аллофонов в масштабных дикторонезависимых системах распознавания слитной русской речи.

Описание данных

В качестве речевого материала используется обучающая выборка базы данных TeCoRus, предназначенная для приложений, использующих телефонный канал связи. Обучающая выборка представляет собой шестичасовую запись чтения 6 дикторами и состоит из 510 отдельных предложений, отсегментированных и размеченных вручную

Критерии качества

Критерием качества служит логарифм правдоподобия контрольной выборки относительно модели.

Требования к проекту

Логарифм правдоподобия для нашего дерева должн быть больше логарифма правдоподобия для базового. В качестве базового выбран набор марковских моделей соответсвующих фонемам русского языка.

Выполнимость проекта

Сложность распознавания ухудшается высокой вариативностю произношения одних и тех же звуков, а так же различными артикулярными характеристиками речевого аппарата у разных дикторов. Так же в данных присутсвует фоновый шум.

Используемые методы

В данной работе для статистического моделирования спектральной динамики гласных и согласных звуков применяется скрытая марковская модель (СММ) из 3-х последовательных состояний. Классификация аллофонов осуществляется с помощью бинарных деревьев. Для построения бинарного дерева решений разработан набор вопросов, зависящих от контекста и адресованных к центральному элементу аллофона.

Постановка задачи

Описание алгоритмов

Обзор литературы

Базовые предположения

Математическое описание

Варианты или модификации

Описание системы

  • Ссылка на файл system.docs
  • Ссылка на файлы системы

Отчет о вычислительных экспериментах

Визуальный анализ работы алгоритма

Анализ качества работы алгоритма

Анализ зависимости работы алгоритма от параметров

Отчет о полученных результатах

Список литературы

Данная статья является непроверенным учебным заданием.
Студент: Участник:Дорофеев Данила
Преподаватель: Участник:В.В. Стрижов
Срок: 15 декабря 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты