Биномиальное распределение

Материал из MachineLearning.

Версия от 07:49, 2 ноября 2009; Pavel Vilenkin (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Определение

Биномиальное распределение - дискретное распределение вероятностей случайной величины X, принимающей целочисленные значения k=0,1,\ldots,n с вероятностями:

P(X=k)=C_n^kp^k(1-p)^{n-k}.

Данное распределение характеризуется двумя параметрами: целым числом n>0, называемым числом испытаний, и вещественным числом p, 0\le p\le 1, называемом вероятностью успеха в одном испытании. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из n независимых испытаний, в каждом из которых может произойти "успех" с вероятностью p, то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы X=X_1+\cdots+X_n независимых слагаемых, имеющих распределение Бернулли.

Основные свойства

Характеристическая функция \phi(t)=(1+p(e^{it}-1))^n

Моменты: MX=np, DX=np(1-p)

Асимметрия: \gamma_1=\frac{1-2p}{\sqrt{np(1-p)}}; при p=0.5 распределение симметрично относительно центра n/2

Асимптотические приближения при больших n

Личные инструменты