Вероятностное пространство
Материал из MachineLearning.
Вероятностное пространство — это математическая модель случайного эксперимента (опыта) в аксиоматике А. Н. Колмогорова. Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, необходимую для его математического анализа средствами теории вероятностей. Любая задача теории вероятностей решается в рамках некоторого вероятностного пространства, полностью заданного изначально. Задачи, в которых вероятностное пространство задано не полностью, а недостающую информацию следует получить по результатам наблюдений, относятся к области математической статистики.
Содержание |
Определение
Вероятностное пространство — это тройка , где:
- — это множество объектов , называемых элементарными исходами эксперимента. На это множество не накладывается никаких условий, оно может быть совершенно произвольным. При задании вероятностной модели для конкретного случайного эксперимента множество необходимо определять таким образом, чтобы в любой реализации опыта происходил один и только один элементарный исход. Элементарный исход содержит в себе всю возможную информацию о результате случайного опыта. С формальной математической точки зрения «произвести случайный опыт» означает в точности указать один элементарный исход , который произошел в данной реализации опыта.
- — это некоторая зафиксированная система подмножеств , которые будут называться (случайными) событиями. Если элементарный исход, произошедший в результате реализации случайного опыта, входит в событие , то говорят, что в данной реализации событие произошло, иначе говорят, что событие не произошло. Совокупность событий должна быть сигма-алгеброй, то есть удовлетворять следующим свойствам:
- Пустое множество должно быть событием, то есть принадлежать . Это событие, которое существует в любом вероятностном пространстве, называется невозможным, поскольку оно никогда не происходит.
- Все множество также должно быть событием: . Это событие называется достоверным, так как происходит при любой реализации случайного опыта.
- Совокупность событий должна образовывать алгебру, то есть быть замкнутой относительно основных теоретико-множественных операций, выполняемых над конечным числом событий. Если и , тогда должно быть , , . Операции над событиями имеют очевидный содержательный смысл.
- В дополнение к указанным свойствам, система должна быть замкнута относительно операций над событиями, выполняемых в счетном числе (свойство сигма-алгебры). Если , тогда должно быть и .
- — это числовая функция, которая определена на и ставит в соответствие каждому событию число , которое называется вероятностью события . Эта функция должна быть конечной сигма-аддитивной мерой, равной 1 на всем пространстве, то есть обладать свойствами:
- для любого
- ,
- Если и — события, причем , тогда (свойство аддитивности).
- Если , причем Если для любых Если , тогда должно быть (свойство сигма-аддитивности).
Заметим, что последнее свойство сигма-аддитивности меры эквивалентно (при условии выполнения всех прочих свойств, в том числе конечной аддитивности) любому из следующих свойств непрерывности меры:
- Если и , тогда .
- Если и , тогда .
- Если , и , тогда .
Примеры наиболее часто использующихся вероятностных пространств
Дискретные вероятностные пространства
Если множество элементарных исходов конечно или счетно: , то соответствующее вероятностное пространство называется дискретным. В случае дискретных вероятностных пространств событиями обычно считают все возможные подмножества . В этом случае для задания вероятности необходимо и достаточно приписать каждому элементарному исходу число так, чтобы их сумма была равна 1. Тогда вероятность любого события задается следующим образом:
Вероятностные пространства на прямой
Вероятностные пространства на прямой () естественным образом возникают при изучении случайных величин. При этом в общем случае уже не получается рассматривать в качестве событий любые подмножества прямой, поскольку на таком широком классе обычно нельзя задать вероятностную меру, удовлетворяющую необходимым аксиомам. Универсальная сигма-алгебра событий, достаточная для работы - это сигма-алгебра борелевских множеств : наименьшая сигма-алгебра, содержащая все открытые множества. Эквивалентное определение - наименьшая сигма-алгебра, содержащая все интервалы . Универсальный способ задания вероятностной меры на данной сигма-алгебре - через функцию распределения случайной величины.
Вероятностные пространства в конечномерном пространстве
Вероятностные пространства с множеством элементарных исходов естественным образом возникают при изучении случайных векторов. Универсальной сигма-алгеброй событий при этом также является борелевская сигма-алгебра , порожденная всеми открытыми множествами. Принципиально этот случай мало чем отличается от случая одной прямой.
Вероятностные пространства в пространстве для произвольного множества индексов
При изучении случайных процессов возникают более сложные вероятностные пространства с множеством элементарных исходов , где индексы часто интерпретируются как "время". Чаще всего рассматривают случаи (процессы с дискретным временем) или , (процессы с непрерывным временем).
Литература
1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.