Статистический анализ данных (курс лекций, К.В.Воронцов)/2009

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Задание 1. Исследование статистических критериев на модельных данных

Необходимо провести исследование одного из классических критериев проверки статистических гипотез. Интерес представляет поведение достигаемого уровня значимости (p-value) как функции размера выборок и параметров распределения. В соответствии с индивидуальными параметрами задания необходимо сгенерировать одну или несколько выборок из указанного распределения, выполнить проверку гипотезы при помощи соответствующего критерия, а затем многократно повторить эту процедуру для различных значений параметров. При этом, в зависимости от индивидуальных особенностей задания, выборки могут как генерироваться заново для каждого значения объёма выборки n, так и образовываться путём добавления одного элемента к уже имеющейся выборке объёма n-1. По результатам расчётов необходимо построить следующие графики:

  • график зависимости достигаемого уровня значимости от значений параметров при однократном проведении эксперимента (1 балл);
  • график зависимости достигаемого уровня значимости от значений параметров, усреднённого по нескольким десяткам экспериментов (+1 балл);
  • график с эмпирическими оценками мощности критерия для разных значений параметров (+1 балл).

В качестве оценки мощности принимается доля отвержений нулевой гипотезы среди всех проверок. То есть, если эксперимент повторялся k раз для каждого набора значений параметра, и в m из k случаев гипотеза была отвергнута на некотором фиксированном уровне значимости \alpha (примем \alpha=0.05), оценкой мощности будет отношение m/k.

Необходимо сдать: выполненный в LaTex или Microsoft Word отчёт с описанием алгоритма, построенными графиками и выводами, *.m-файл.

Пример выполнения задания

Исследуем поведение классического двухвыборочного критерия Стьюдента для проверки гипотезы однородности против альтернативы сдвига. x^n = (x_1,\ldots,x_n)\sim N(\mu_1,\sigma),\;\; y^n = (y_1,\ldots,y_n)\sim N(\mu_2,\sigma);

H_0\,:\; \mu_1=\mu_2,

H_1\,:\; \mu_1\neq\mu_2.

Параметры задачи принимают следующие значения:

\sigma = 1; \;\;\; \mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\;  n=5\,:\,1\,:\,50.

При каждом значении \mu_2 выборки для разных значений n генерируются независимо.

График значений достигаемого уровня значимости при однократной генерации выборок:

График значений достигаемого уровня значимости, усрёднённых по 100 экспериментам:

График значений эмпирических оценок мощности критерия при проведении 100 экспериментов:

Индивидуальные параметры задания

Одновыборочный критерий Стьюдента

x^n \sim N(\mu,1);

H_0\,:\; \mu=0, \;\; H_1\,:\; \mu\neq 0;

\mu=0\,:\,0,05\,:\,3; \;\;\;  n=5\,:\,1\,:\,50.

Безродный Богдан

При каждом значении \mu выборки для разных значений n генерируются независимо.

Двойнев Александр

При каждом значении \mu выборка x^n получается из x^{n-1} добавлением одного случайного элемента.


Двухвыборочный критерий Стьюдента для независимых выборок

x^n \sim N(\mu_1,\sigma_1),\;\; y^n \sim N(\mu_2,\sigma_2);

H_0\,:\; \mu_1=\mu_2, \;\; H_1\,:\; \mu_1\neq\mu_2;

 n=5\,:\,1\,:\,50.

Коликова Екатерина

\mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\; \sigma_1=\sigma_2=1; при каждом значении \mu_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.

Черняев Константин

\mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\; \sigma_1=\sigma_2=1; при каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Задонский Дмитрий

\mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\; \sigma_1=1;\;\;\sigma_2=2; при каждом значении \mu_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.

Ломакин Василий

\mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\; \sigma_1=1;\;\;\sigma_2=2; при каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Гуков Алексей

\mu_1=\mu_2=0; \;\;\; \sigma_1=1;\;\;\sigma_2=0.1\,:\,0.1\,:\,4; при каждом значении \sigma_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.

Решетняк Илья

\mu_1=\mu_2=0; \;\;\; \sigma_1=1;\;\;\sigma_2=0.1\,:\,0.1\,:\,4; при каждом значении \sigma_2 выборки для разных значений n генерируются независимо.


Двухвыборочный критерий Стьюдента для связных выборок (случай парных повторных наблюдений)

x^n \sim N(\mu_1,1),\;\; y^n \sim N(\mu_2,1);

H_0\,:\; \mu_1=\mu_2, \;\; H_1\,:\; \mu_1\neq\mu_2;

\mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\;  n=5\,:\,1\,:\,50.

Дзыба Дмитрий

При каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Осокин Антон

При каждом значении \mu_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.


Одновыборочный критерий Уилкоксона

x^n \sim F(\mu);

H_0\,:\; \mu=0, \;\; H_1\,:\; \mu\neq 0;

\mu=0\,:\,0,05\,:\,3; \;\;\;  n=5\,:\,1\,:\,50.

Задонский Максим

F(\mu)=N(\mu,1); при каждом значении \mu выборки для разных значений n генерируются независимо.

Карпинская Алина

F(\mu)=N(\mu,1); при каждом значении \mu выборка x^n получается из x^{n-1} добавлением одного случайного элемента.

Нарышкин Андрей

F(\mu)=U[\mu-3,\mu]; при каждом значении \mu выборки для разных значений n генерируются независимо.

Вишняков Святослав

F(\mu)=U[\mu-3,\mu]; при каждом значении \mu выборка x^n получается из x^{n-1} добавлением одного случайного элемента.


Двухвыборочный критерий Уилкоксона для связных выборок (случай парных повторных наблюдений)

x^n \sim F(\mu_1),\;\; y^n \sim F(\mu_2);

H_0\,:\; \mu_1=\mu_2, \;\; H_1\,:\; \mu_1\neq\mu_2;

\mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\;  n=5\,:\,1\,:\,50.

Гикал Александр

F=N(\mu,1); при каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Ломакина-Румянцева Екатерина

F=N(\mu,1); при каждом значении \mu_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.

Джумабекова Айнагуль

F=U[0,\mu+1]; при каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Мягков Артем

F=U[0,\mu+1]; при каждом значении \mu_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.


Критерий Краскелла-Уоллиса для независимых выборок

x^n \sim F(\mu_1),\;\; y^n \sim F(\mu_2);

H_0\,:\; \mu_1=\mu_2, \;\; H_1\,:\; \mu_1\neq\mu_2;

\mu_1=0; \;\;\; \mu_2=0\,:\,0,05\,:\,3; \;\;\;  n=5\,:\,1\,:\,50.

Ахламченкова Ольга

F=N(\mu,1); при каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Голодов Валентин

F=U[0,\mu+1]; при каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Алимбаев Данияр

F=U[0,\mu+1]; при каждом значении \mu_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.


Критерий Колмогорова-Смирнова для проверки нормальности

x^n - смесь распределений N(0,1) и U[-\mu,\mu] с весами \alpha и 1-\alpha соответственно. При генерации выборки используется случайный датчик - если его значение не превосходит \alpha, то добавляем в выборку элемент, взятый из нормального распределения, иначе - элемент, взятый из равномерного;

H_0\,:\; x^n\sim \cdot N(0,1), \;\; H_1\,:\; F_n(x)\neq N(0,1);

\alpha=0\,:\,0,02\,:\,1; \;\;\;  n=10\,:\,5\,:\,250.

При каждом значении параметров выборки для разных значений n генерируются независимо.

Толстихин Илья

\mu=1.

Янгиров Ильдар

\mu=2.


Критерий хи-квадрат Пирсона для проверки нормальности

x^n - смесь распределений N(0,1) и U[-\mu,\mu] с весами \alpha и 1-\alpha соответственно. При генерации выборки используется случайный датчик - если его значение не превосходит \alpha, то добавляем в выборку элемент, взятый из нормального распределения, иначе - элемент, взятый из равномерного;

H_0\,:\; x^n\sim \cdot N(0,1), \;\; H_1\,:\; F_n(x)\neq N(0,1);

\alpha=0\,:\,0,02\,:\,1; \;\;\;  n=10\,:\,5\,:\,250.

При каждом значении параметров выборки для разных значений n генерируются независимо.

Дерябин Василий

\mu=1.

Одинокова Евгения

\mu=2.


F-критерий Фишера для проверки равенства дисперсий

x^n \sim N(0,\sigma_1),\;\; y^n \sim N(\mu,\sigma_2);

H_0\,:\; \sigma_1=\sigma_2, \;\; H_1\,:\; \sigma_1\neq \sigma_2;

 n=5\,:\,1\,:\,50.

Аманжолов Рустем

\mu=0; \;\;\; \sigma_1=1, \;\; \sigma_2=0.1\,:\,0.1\,:\,4; при каждом значении \sigma_2 выборки для разных значений n генерируются независимо.

Пасконова Ольга

\mu=0; \;\;\; \sigma_1=1, \;\; \sigma_2=0.1\,:\,0.1\,:\,4; при каждом значении \sigma_2 выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.

Гордеев Дмитрий

\sigma_1=\sigma_2=1; \;\;\; \mu=0\,:\,0,05\,:\,3; при каждом значении \mu выборки для разных значений n генерируются независимо.

Найденов Никита

\sigma_1=\sigma_2=1; \;\;\; \mu=0\,:\,0,05\,:\,3; при каждом значении \mu выборки x^n, y^n получаются из x^{n-1}, y^{n-1} добавлением одного случайного элемента.



Задание 2. Анализ реальных данных

Интеллект и размер головного мозга

Исследование проводилось среди студентов психологического факультета крупного университета. Все испытуемые должны были быть правшами, а также не иметь повреждений мозга, эпилепсии, алкоголизма и сердечных заболеваний. Участники предварительного этапа эксперимента прошли несколько IQ-тестов, после чего для дальнейшего участия было отобрано 20 мужчин и 20 женщин, имевших коэффециент интеллекта от 103 до 130 баллов. Для каждого из них при помощи магнитно-резонансной томографии были получены 18 снимков срезов головного мозга, и общее количество пикселей на всех 18 снимках было принято в качестве меры объёма мозга. Помимо этого, были собраны данные о росте и массе тела испытуемых.

Толстихин Илья

Проверить наличие взаимосвязи между интеллектом и объёмом головного мозга для всех испытуемых, независимо от пола, затем провести аналогичный анализ отдельно для мужчин и женщин. Исследовать ту же зависимость, исключив влияние факторов роста и массы тела.

Осокин Антон

Проанализировать, какие из факторов значимо влияют на объём головного мозга. Проверить, по какой из двух групп факторов можно предсказывать объём головного мозга с большей уверенностью - по результатам тестов интеллекта, или по полу, росту и весу.

Продолжительность жизни больных онкологическими заболеваниями

Выборка состоит из 64 пациентов, у которых был диагностирован неизлечимый рак различных органов. Всем им был назначен к приёму витамин C. Приведены данные об остаточной продолжительности жизни пациентов в днях.

Черняев Константин

Требуется проверить, отличается ли остаточная продолжительность жизни в зависимости от того, какой орган поражён раковой опухолью. Оценить остаточную продолжительность жизни в каждой из групп.

Личные инструменты