Математические методы распознавания образов (курс лекций, В.В.Китов)
Материал из MachineLearning.
Курс посвящен алгоритмам машинного обучения (machine learning), которые сами настраиваются на известных данных, выделяя их характерную структуру и взаимосвязи между ними, для их прогнозирования, анализа, компактного описания и визуализации. Основной акцент курса сделан на задачах предсказания дискретных величин (классификация) и непрерывных величин (регрессия), хотя в курсе также рассматриваются смежные области - эффективное снижение размерности пространства, выделение наиболее значимых признаков для предсказания, методы оценивания и сравнения вероятностных распределений, рекомендательные системы и планирование экспериментов.
Лектор: Виктор Китов
Семинарист: Евгений Соколов
Курс читается студентам 3 курса кафедры «Математические методы прогнозирования» ВМиК МГУ, магистрам, зачисленным на эту кафедру, и не проходивших ранее аналогичных курсов, а также для всех желающих. На материал данного курса опираются последующие кафедральные курсы.
По изложению, рассматриваются математические основы методов, лежащие в их основе предположения о данных, взаимосвязи методов между собой и особенности их практического применения.
Курс сопровождается семинарами, раскрывающими дополнительные темы курса и отрабатывающими навыки практического применения рассматриваемых методов. Практическое использование методов машинного обучения в основном будет вестись с использованием языка python и соответствующих библиотек для научных вычислений.
От студентов требуются знания линейной алгебры, математического анализа, теории вероятностей, математической статистики и методов оптимизации. Практические задания должны выполняться с использованием языка Python и его научных библиотек.
- Курс во многом пересекается с курсом К.В.Воронцова по машинному обучению, с которым также рекомендуется ознакомиться.
- Анонимные отзывы и комментарии по лекциям можно оставлять здесь.
Программа курса
Первый семестр
Введение в машинное обучение.
Метод ближайших центроидов и K ближайших соседей.
Другие метрические методы.
Сложность моделей. Подготовка данных.
Метрики близости.
Оптимизация метода K ближайших соседей.
Метод главных компонент.
Свойства симметричных матриц, положительно определенные матрицы, векторное дифференцирование.
Линейная регрессия.
Линейная классификация.
Метод опорных векторов.
Презентация. +вывод двойственной задачи SVM +support vector regression
до вывода двойственной задачи.
Обобщения методов через ядра Мерсера.
+ двойственная задача для гребневой регрессии
Оценивание классификаторов.
Презентация. +классификатор выпуклой оболочки ROC кривых.
Решающие деревья.
Ансамбли прогнозирующих алгоритмов. Смещение и дисперсия моделей.
Бустинг.
Второй семестр
xgBoost.
Байесовское решающее правило. Предположение наивного Байеса. Генеративные и дискриминативные модели. Примеры генеративных моделей.
Ядерно-сглаженные оценки плотности.
Отбор признаков
Многослойный персептрон
Алгоритм обратного распространения ошибки
Применение нейросетей для работы с изображениями
Сингулярное разложение.
Доказательство всех основных свойств.
Рекомендательные системы.
Кластеризация
Обнаружение аномалий
Активное обучение
EM-алгоритм.
Тематическая модель PLSA
Дополнительные материалы
Разделение смеси многомерных нормальных распределений
Рекомендуемые ресурсы по Python
- Примеры для начинающих: краткое руководство с примерами по Python 2
- Python from scratch: A Crash Course in Python for Scientists
- Коллекция интересных IPython ноутбуков
- Лекции Scientific Python
- Книга: Wes McKinney «Python for Data Analysis»
- Официальный сайт
- Научные библиотеки: NumPy, Pandas, SciKit-Learn, Matplotlib.