Глубинное обучение (курс лекций)/2019

Материал из MachineLearning.

Версия от 11:20, 14 февраля 2019; Kropotov (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

This is introductory course on deep learning models and their application for solving different problems of image and text analysis.

Instructors: Dmitry Kropotov, Victor Kitov, Nadezhda Chirkova, Oleg Ivanov and Evgeny Nizhibitsky.

E-mail for questions: bayesml@gmail.com. Please include in subject the tag [CMC DL19].

The timetable in Spring 2019: Fridays, room 685, lectures begin at 14-35, seminars begin at 16-20.

Announcements

Rules and grades

Practical assignments

Practical assignments are provided on course page in anytask.org. Invite code: ????

Lectures

Date No. Topic Materials
15 Feb. 2019 1 Introduction. Automatic differentiation.
22 Feb. 2019 2 Optimization and regularization methods for neural networks
01 Mar. 2019 3 Convolutional neural networks for image classification problem
15 Mar. 2019 4 Convolutional neural networks for image segmentation problem
22 Mar. 2019 5 Object detection and localization on images
29 Mar. 2019 6 Image style transfer
05 Apr. 2019 7 Recurrent neural networks
12 Apr. 2019 8 Attention mechanism
19 Apr. 2019 9 Generative adversarial networks
26 Apr. 2019 10 Riemannian optimization
17 May 2019 11

Seminars

Date No. Topic Materials
15 Feb. 2019 1 Automatic differentiation.
22 Feb. 2019 2 Introduction to Azure and Pytorch
01 Mar. 2019 3 Convolutional neural networks for MNIST
15 Mar. 2019 4 Deep learning contests
22 Mar. 2019 5 Face recognition
29 Mar. 2019 6 Image style transfer
05 Apr. 2019 7 Recurrent neural networks
12 Apr. 2019 8 Attention mechanism
19 Apr. 2019 9 Generative adversarial networks
26 Apr. 2019 10 Riemannian optimization
17 May 2019 11

Arxiv

2017

2016

Личные инструменты