Байесовские методы машинного обучения (курс лекций) / 2019
Материал из MachineLearning.
Лектор: Дмитрий Петрович Ветров,
Семинаристы: Кирилл Струминский, Александра Волохова
Контакты: по всем вопросам, связанным с курсом, просьба писать на bayesml@gmail.com. В название письма обязательно добавлять [ВМК БММО19]. Письма без этого тега могут просто не дойти до преподавателей!
У курса есть чат в телеграме. Все объявления по курсу будут вывешиваться именно в чате! Всем студентам будет отправлена ссылка на него на почту. Преподаватели в чате бывают, но не всегда. По всем важным вопросам стоит писать на почту.
Содержание |
Новости
13.09.19 Выложена формулировка первого практического задания. Стандартный срок сдачи - 27 сентября 23:00.
20.09.19 Выложена формулировка первого теоретического задания. Стандартный срок сдачи - 4 октября 23:00.
Отчётность по курсу и критерии оценки
В курсе предусмотрено несколько форм контроля знаний: 2 практических домашних задания, 3 теоретических домашних задания, 4 домашних лабораторных работы и устный экзамен. Итоговая оценка по курсу в 10-бальной шкале рассчитывается по формуле:
Итоговая оценка = 0.3 * Экз + 0.3 * Практ + 0.4 * ( 3/7 * Теор + 4/7 * Лаб ))
Итоговая оценка округляется арифметически. Оценка за каждый тип заданий рассчитывается как среднее по всем заданиям данного типа. Каждое задание и экзамен оцениваются по 10-балльной шкале (по заданиям допускается дробная оценка). За некоторые задания можно будет получить бонусные баллы, о чем будет объявляться при выдаче задания. Оценке 5 в пятибальной шкале соответствует оценка 8 и выше, оценке 4 -- оценка [6, 8), оценке 3 -- промежуток [4, 6).
Кроме набора необходимого балла по формуле, для получения положительной оценки по курсу также нужно выполнить следующие обязательные условия:
- сдать экзамен на оценку не ниже 4 из 10,
- сдать одно практическое задание, одно теоретическое задание и две лабораторных работы на оценку не менее 5 из 10 (без учета штрафа за опоздание).
Про оценивание экзамена:
- На экзамене студент может отказаться от оценки и пойти на пересдачу, на которой может заново получить оценку.
- Если студенту не хватает баллов на оценку «удовлетворительно» по формуле выше, то он отправляется на пересдачу. При этом оценка, полученная на пересдаче, добавляется к положительной (4 из 10 и выше) оценке, полученной на основном экзамене и т.д. до тех пор, пока студент не наберет на итоговую оценку «удовлетворительно» (для итоговых оценок выше «удовлетворительно» оценки за экзамен не суммируются).
Домашние задания
- В рамках курса предполагается выполнение двух практических заданий, трёх теоретических домашних заданий и четырёх лабораторных работ. Задания сдаются в системе anytask. Для получения инвайта просьба писать на почту курса.
- Все практические задания и лабораторные сдаются на Python 3. Код практических заданий должен быть обязательно предварительно сдан в систему ejudge. Формат логина в ejudge должен быть следующий: vmk19_ + первая буква имени + фамилия. Пример: vmk19_elobacheva. Конфигурация сервера проверки кода в ejudge: python==3.5.3, numpy==1.14.5, scikit-learn==0.19.2, scipy==1.1.0.
- Все задания должны выполняться студентами самостоятельно. Использование кода и решений от коллег или из открытых источников запрещено и считается плагиатом. Все студенты, замешанные в плагиате (в том числе и те, у кого списали) будут сурово наказаны.
- Для каждого задания устанавливается стандартный и жесткий сроки сдачи. Жесткий срок сдачи обычно отстоит от стандартного на одну неделю. За каждый день просрочки после стандартного срока сдачи устанавливается штраф в 1 балл. После жесткого срока сдачи задания на проверку не принимаются.
Примерные даты выдачи домашних заданий (они могут быть изменены!):
- Практическая работа -- 13 сентября, 18 октября
- Лабораторная работа -- 4 октября, 15 ноября, 22 ноября, 6 декабря
- Теоретическое задание -- 20 сентября, 4 октября, 25 октября
Расписание занятий
В 2019 году курс читается на факультете ВМиК МГУ по пятницам в ауд. 607, начало в 14-35 (лекция) и 16-20 (семинар).
Дата | № занятия | Занятие | Материалы |
---|---|---|---|
13 сентября 2018 | 1 | Лекция «Байесовский подход к теории вероятностей. Примеры байесовских рассуждений.» | Конспект Саммари Презентация |
Семинар «Байесовские рассуждения. Выдача практического задания №1» | Задачи Конспект | ||
20 сентября 2018 | 2 | Лекция «Сопряжённые распределения, аналитический байесовский вывод, экспоненциальный класс распределений» | Конспект |
Семинар «Сопряжённые распределения» | Задачи Конспект | ||
27 сентября 2018 | 3 | Лекция «Байесовский выбор модели» | Презентация Конспект |
Семинар «Подсчёт обоснованности моделей» | Задачи Формулы Конспект | ||
4 октября 2018 | 4 | Лекция «Метод релевантных векторов для задачи регрессии» | Презентация Конспект |
Семинар «Матричные вычисления» | Задачи с семинара Задачи доп 1 Задачи доп 2, | ||
11 октября 2018 | 5 | Лекция «Метод релевантных векторов для задачи классификации» | Саммари Конспект, |
Семинар «Метод релевантных векторов» | Задачи КонспектПрезентация Доказательство тождества Вудбери Доказательство тождества об определителе | ||
18 октября 2018 | 6 | Лекция «EM-алгоритм. Байесовский метод главных компонент» | Саммари Конспект |
Семинар «ЕМ-алгоритм» | Задачи Конспект | ||
25 октября 2018 | 7 | Лекция «Вариационный вывод» | Саммари 1 Саммари 2 Конспект |
Семинар «Вариационный вывод» | Задачи Конспект | ||
1 ноября 2018 | 8 | Лекция «Методы Монте-Карло по схеме марковский цепей (MCMC)» | Саммари |
Семинар «Методы MCMC» | Задачи | ||
15 ноября 2018 | 9 | Лекция «Гибридный метод Монте-Карло и его масштабируемые модиификации» | Hamiltonian dynamics Langevin Dynamics |
Семинар «Гибридный метод Монте-Карло» | Задачи | ||
22 ноября 2018 | 10 | Лекция «Гауссовские процессы для регрессии и классификации» | материалы лекции изложены в разделе 6.4 Бишопа |
Семинар «Гауссовские процессы для регрессии и классификации» | Задачи Конспект | ||
29 ноября 2018 | 11 | Лекция «Непараметрические байесовские методы. Процессы Дирихле» | Саммари |
Семинар «Свойства распределения Дирихле» | Задачи Конспект | ||
6 декабря 2018 | 12 | Лекция «Латентное размещение Дирихле (LDA)» | Саммари |
Семинар «Модификации LDA» | Конспект Статья по HDP |
Замечание: рукописные конспекты лекций и семинаров это в первую очередь заметки лектора и семинаристов, а не материалы по курсу. В них могут содержать неточности!
Литература
- Barber D. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.
- Набор полезных фактов для матричных вычислений
- Простые и удобные заметки по матричным вычислениям и свойствам гауссовских распределений
- Памятка по теории вероятностей
- Ветров Д.П., Кропотов Д.А. Байесовские методы машинного обучения, учебное пособие по спецкурсу, 2007 (Часть 1, PDF 1.22МБ; Часть 2, PDF 1.58МБ)
- Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006.
- Mackay D.J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
- Tipping M. Sparse Bayesian Learning. Journal of Machine Learning Research, 1, 2001, pp. 211-244.
- Шумский С.А. Байесова регуляризация обучения. В сб. Лекции по нейроинформатике, часть 2, 2002.
Страницы курса прошлых лет
2010 год
2011 год
весна 2013 года
осень 2013 года
2014 год
2015 год
2016 год
2017 год
2018 год