Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Двухфакторная непараметрическая модель

Данные.

В каждом из n блоков содержится по одному наблюдению x_{ij} на каждуб из k обработок. Будем считать наблюдения реализацией случайных велечин X_{ij} в модели

X_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, где 1 \le i \le n, 1 \le j \le k, .

Здесь \mu - неизвестное общее среднее, \alpha_i - эффект блока i (неизвестный мешающий параметр), \beta_j - эффект блока j (интересующий нас параметр), \epsilon_{ij} - случайная ошибка j

Допущения.

1. Все ошибки \epsilon_{ij} независимы.

2. Все \epsilon_{ij} имеют одинаковое непрерывное (неизвестное) распределение.

Критерий Фридмана

H_0

Критерий Пейджа

История

Литература

  1. Шеффе Г. Дисперсионный анализ. — М., 1980.
  2. Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
  3. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
  4. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
  5. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
  6. Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ.
  7. Холлендер М., Вульф Д.А. Непараметрические методы статистики.

Ссылки

См. также

Личные инструменты