Математические методы анализа текстов (курс лекций) / осень 2019

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

В курсе рассматриваются основные задачи и математические методы обработки естественного языка.

Курс читается:

От студентов требуются знание курса машинного обучения, основ глубинного обучения, а также языка программирования Python.

Контакты

  • На ВМК занятия проходят в аудитории 72 по вторникам, начало в 10:30
  • В ФИЦ ИУ РАН занятия по средам, начало в 16:10
  • По всем конструктивным вопросам пишите в telegram-чат
  • Репозиторий со всеми материалами: ссылка
  • Короткая ссылка на страницу курса: ссылка

Правила сдачи курса

  • В рамках курса предполагается четыре практических задания и экзамен.
  • Практические задания сдаются в систему anytask (инвайт у преподавателя). Срок выполнения каждого задания — 2 недели. За каждое задание можно получить до 10-ти баллов. За каждый день просрочки назначается штраф 1 балл. Основной язык выполнения заданий — Python 3.
  • Все практические задания выполняются самостоятельно. Любые работы, содержащие плагиат, оцениваются в 0 баллов.
  • Правила сдачи экзамена появятся позднее.

Правила выставления итоговой оценки

X_e — оценка за экзамен по 10-ти балльной шкале, X_d — суммарная оценка студента за практические задания, X_{max} — максимальная оценка за практические задания (без учёта бонусов)

  • Если X_d / X_{max} \geq 1 — максимальная оценка автоматом
  • Если X_d / X_{max} < 0.125 — пересдача автоматом
  • Иначе, оценка в 10-ти балльной шкале вычисляется как  X_e + round(8 X_d / X_{max} - 4.5)
  • Для ВМК и МАИ: 3-4 — оценка удовлетворительно, 5-7 — оценка хорошо, 8-10 — оценка отлично
  • Правила выставления оценки на пересдаче будут обговариваться отдельно в конце курса

Программа курса

Тема Материалы Д/З
1 Введение в область анализа текстов (Natural Language Processing). Обзор основных задач. слайды
2 Предобработка данных. Простейшие модели классификации. слайды
3 Векторные представления слов. слайды практическое задание 1
4 Задача теггинга последовательности. Условные случайные поля (CRF). слайды
5 Задача теггинга последовательности. Нейросетевые и комбинированные модели для теггинга. слайды практическое задание 2
6 Языковое моделирование. Генерация текста на естественном языке. слайды
7 Sequence-to-sequence, механизмы внимания, трансформеры. Машинный перевод. слайды
8 Глубокие архитектуры представления предложений и документов. Перенос обучения. слайды
9 Синтаксический разбор и его применение в практических задачах.
10 Задача классификации текстов.
11 Тематическое моделирование.
12 Сегментация и суммаризация текстов.
13 To be announced
14 To be announced

Страницы прошлых лет

2018 (ФУПМ МФТИ), 2018 (ВМК МГУ)

2017 (ВМК МГУ)

Дополнительные материалы

Литература

Другие курсы по NLP

Личные инструменты