Обработка изображений в системах искусственного интеллекта (курс лекций, И.А.Матвеев)/Вопросы 1 семестр
Материал из MachineLearning.
Перечень контрольных вопросов для сдачи экзамена в 7-ом семестре студентов 4 курса
специализации «Проектирование и организация систем» кафедры «Интеллектуальные системы» ФУПМ МФТИ
- Модели обработки изображения с системах ИИ. Первичная обработка изображения в сетчатке и зрительной коре головного мозга, структура глаза, спектральная чувствительность колбочек и палочек, из пространственная организация и функции, рецептивное поле. Выделение признаков на изображении зрительной системой.
- Первичная обработка изображений. Путь сигнала при обработке в системах ИИ. Математическая модель и устройство видеокамеры. Изменения распределения сигнала при его преобразовании Основные операции, производимые камерой. Типы сенсоров, получение цветных изображений.
- Дискретизация аналогового видео сигнала сенсора в видеокамере, получение цифрового изображения. Математическая модель дискретизации двумерного непрерывного поля яркости, спектр дискретного изображения, условия восстановления непрерывного изображения (теорема Котельникова).
- Квантование аналогового видео сигнала сенсора в видеокамере, получение цифрового изображения. Математическая модель квантования значений непрерывной функции яркости, оптимальное квантование, квантователь Ллойда-Макса, равномерное и неравномерное квантование.
- Модели представления изображений. Функциональное, матричное, статистическое описание изображений. Представление цветных изображений, основания трех-цветовой модели, основные цветовые модели (RGB,HSI,HSV,YUV).
- Гистограмма, виды гистограмм, параметры гистограммы, линейные и нелинейные операции с гистограммой. Изменение гистограммы при преобразовании изображения, преобразования с насыщением. Преобразование изображения с параметрами, вычисленными по гистограмме, нормализация и эквализация.
- Алгебраические преобразования изображения. Описание прозрачности областей с помощью маски. Усреднение изображений, дисперсия яркости в точках усредненного изображения с аддитивным нормальным шумом. Использование аддитивных моделей фона для контрастирования изображения и фильтрации шума.
- Геометрические преобразования изображения. Аффинное преобразование, полиномиальное преобразование второго порядка. Интерполяция значений яркости, интерполяция по ближайшему соседу, билинейная интерполяция, интерполяционные сверточные ядра.
- Фильтрация. Интеграл суперпозиции системы, интеграл свертки. Характеристические функции системы: импульсная характеристика, переходная характеристика, передаточная функция.
- Понятие интеграла свертки, свертка в пространственной области, ядро свертки, корреляция. Интегральное преобразование Фурье, спектральная теорема о свертке, теорема о корреляции. Применение теоремы о свертке на примере инверсной и венеровской фильтрации изображения.
- Интегральное преобразование Фурье, пространственная частота. Принцип неопределенности, теорема об оптимально локализованной функции. Примеры ядер фильтров в пространственной и частотной областях, низкочастотные и высокочастотные фильтры. Сглаживающие и повышающие резкость фильтры, их описание в пространственной и частотной областях, примеры.
- Понятие дискретной свертки. Дискретное преобразование Фурье (ДПФ) со сдвигом начала координат в центр изображения. Дискретная низкочастотная фильтрация: идеальный низкочастотный фильтр, НЧ фильтр Баттерворта, гауссов НЧ фильтр, усреднение. Дискретная высокочастотная фильтрация: идеальный низкочастотный фильтр, ВЧ фильтр Баттерворта, гауссов ВЧ фильтр. Лапласиан и повышение резкости. Режекторная, полосовая и узкополосная фильтрация.
- Дискретное преобразование Фурье (ДПФ), его свойства, требование периодичности сигнала. Дискретная свертка, условия периодического дополнения изображения для корректного использования свертки в частотной области. Теорема о корреляции, применение ДПФ для поиска паттерна.
- Дискретное преобразование Фурье (ДПФ), его свойства, разделимость ядра, обратное преобразование. Быстрое преобразование Фурье (БПФ), схема реализации.
- Нелинейная фильтрация. Фильтры порядковых статистик. Влияние размера окна фильтрации, адаптивный медианный фильтр.
- Морфологические операции на дискретных изображениях, частные случаи бинарного и полутонового изображений. Понятие смежности и связности. Дилатация и эрозия, их двойственность. Операции Открытия и Замыкания, их двойственность. Морфологическая фильтрация, сглаживающий фильтр, выделение границ, заполнение областей, утончение, утолщение, построение остова.
- Многомасштабный анализ изображения, проблема локализации масштаба сигнала для оптимальной фильтрации. Пирамида изображений, пирамида Гаусса и Лапласа. Многомасштабная фильтрация по пирамиде.
- Краткопространственный анализ изображения, проблема локализации положения сигнала для оптимальной фильтрации. Интегральное оконное преобразование Фурье (ОПФ). Функция окна, ее локализация в пространственной и временной областях. Функция Габора. Обратное ОПФ.
- Проблема одновременной локализации масштаба и положения сигнала. Интегральное вейвлет-преобразование (ИВП), базисная фейвлет-функция, условие допустимости базисного вейвлета, локализация вейвлет-функции в пространственной и частотной областях. Примеры базисных фейвлетов.
- Дискретизация параметров базисных вейвлетов. Условие устойчивости для восстановления функции по множеству базисных вейвлетов, базис Рисса, фреймы. Разложение функции по биортогональной системе базисных вейвлетов. Примеры базисных фейвлетов: вейвлет Морле, производные функции Гаусса, DOG, вейвлеты Хаара.
- Кратномасштабный анализ (КМА). Вложенность масштабирующих подпространств, масштабирующая и вейвлетные функции. Дуальные функции и биортогональное разложение пространства функций. Субполосное кодирование.
- Дискретное вейвлет-преобразование (ДВП). Быстрое вейвлет-преобразование (БВП). Вейвлет-пакеты.
См. также