Статистический отчет при создании моделей
Материал из MachineLearning.
|
В данной работе приведен обзор статистических методов оценивания качества регрессионных моделей, используемых популярными программами машинного обучения и статистической обработки данных. Приведены примеры вычисления и анализа полученных оценок.
Постановка задачи
Имеется пространство объектов-строк и пространство ответов . Задана выборка . Обозначеним:
- матрица информации или матрица плана;
- вектор параметров;
- целевой вектор.
Будем считать, что зависимость имеет вид
,
где некоторая неслучайная функция, случайная величина, с нулевым математически ожиданием. В моделях предполагается, что неслучайная составляющая имеет вид:
- и в логистической регрессии.
Требуется численно оценить качество модели при заданном векторе параметров .
Описание решения
Предполагая, что матрица ковариации вектора ошибки имеет вид , где ( может быть задана пользователем, иначе выбирается единичная матрица), получаем выражение для оценки параметров взвешенным методом наименьших квадратов:
Основными инструментами оценки качества линейной модели является анализ:
- регрессионных остатков;
- матрицы частных и получастных корреляций (условные корреляции);
- корреляции и ковариации коэффициентов регрессии;
- статистики Дарбина-Уотсона;
- расстояния Махаланобиса между исходной и модельной зависимостями;
- расстояния Кука (мера изменения прогноза при удалении одного объекта);
- доверительных интервалов для предсказанных значений.
Для оценки качества модели линейной регрессии в работе рассматривается
- анализ регрессионных остатков, включающий в себя:
- вычисление среднеквадратичной ошибки:
- вычисление коэффициента детерминации:
где
- проверку гипотезы о равенстве нулю математического ожидания регрессионных остатков на основе критерия знаков;
- проверку гипотезы о равенстве дисперсий (пропорциональности с заданными коэффициентами) регрессионных остатков на основе критерия Ансари-Брэдли;
- проверку гипотезы о нормальности распределения регрессионных остатков на основе критерия хи-квадрат и критерия Жарка-Бера;
- вычисление расстояния Махаланобиса и Кука;
- вычисление корреляций признаков, корреляций признаков и значений моделируемой функции и коэффициента множественной регрессии.
Для оценки качества модели логистической регрессии в работе рассматриваются оценки
- дисперсии шума модели;
- корреляции и ковариации коэффициентов регрессии;
- значимости компонент пространства объектов для восстановления ответов;
Вычислительный эксперимент
В данном отчете представлены результаты применения созданного инструмента для анализа модели. Отчет состоит из пяти экспериментов, демонстрирующих работу инструмента на различных по качеству моделях. Модели 1-3 приведены для линейной регрессии, 4-5 для логистической.
Модель №1
Неизвестная зависимость: .
Для построения модели использовалось объектов независимо равномерно распределительных на отрезке В качестве шума использовались независимые случайные величины из распределения В качестве признаков использовались . Параметры модели подбирались с помощью метода наименьших квадратов.
Отчет, построенный программой:
Модель №2
Неизвестная зависимость: .
Для построения модели использовалось объектов независимо равномерно распределительных на отрезке В качестве шума использовались независимые случайные величины из распределения В качестве признаков использовались . Параметры модели подбирались с помощью метода наименьших квадратов.
Отчет, построенный программой:
Модель №3
Неизвестная зависимость: .
Для построения модели использовалось объектов независимо равномерно распределительных на отрезке В качестве шума использовались независимые случайные величины из распределения В качестве признаков использовались . Параметры модели подбирались с помощью метода наименьших квадратов.
Модель №4
Неизвестная зависимость: . где индикаторная функция множества .
Для построения модели использовалось объектов из равномерной сетки. Значение в одной из обучающих точек сильно зашумлено. В качестве признаков использовались константа, .
Отчет, построенный программой:
Модель №5
Неизвестная зависимость: . где индикаторная функция множества .
Для построения модели использовалось объектов из равномерной сетки. Значение в одной из обучающих точек сильно зашумлено. В качестве признаков использовались константа, и шумовой признак (порожден стандартным нормальным распределением).
Отчет, построенный программой:
Исходный код и полный текст работы
Функция, строящая отчет, и примеры.
Смотри также
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Hosmer W. D. , Lemeshow S. Applied logistic regression - New York: John Wiley & Sons, 2000.
Данная статья была создана в рамках учебного задания.
См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |