Байесовские методы машинного обучения (курс лекций, Д.П. Ветров, Д.А. Кропотов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Начало работы над страницей курса 2011 года)
(текст о курсе + вводная картинка)
Строка 1: Строка 1:
__NOTOC__
__NOTOC__
-
Курс посвящен т.н. байесовским методам [[Машинное обучение|машинного обучения]] (классификации, прогнозирования, [[Регрессионный анализ|восстановления регрессии]]), которые в настоящее время активно развиваются в мире. Байесовский подход к теории вероятностей является альтернативой классическому частотному подходу. Здесь вероятность интерпретируется как мера незнания, а не как объективная случайность. Простые правила оперирования с вероятностью, такие как формула полной вероятности и формула Байеса, позволяют проводить рассуждения в условиях неопределенности. В этом смысле байесовский подход к теории вероятностей можно рассматривать как обобщение классической булевой логики.
+
{|
 +
|[[Изображение:BMMO11_Intro.jpg|280px]]
 +
| valign="top"|Курс посвящен т.н. байесовским методам, применяемых для решения различных задач [[Машинное обучение|машинного обучения]] (классификации, прогнозирования, [[Регрессионный анализ|восстановления регрессии]]), которые в настоящее время активно развиваются в мире. Байесовский подход к теории вероятностей позволяет эффективно учитывать те или иные предпочтения пользователя при построении решающих правил прогноза. В частности, здесь удается решать задачи селекции признаков, подбора коэффициентов регуляризации и структурных параметров без комбинаторного перебора. В байесовском подходе вероятность интерпретируется как мера незнания, а не как объективная случайность. Простые правила оперирования с вероятностью, такие как формула полной вероятности и формула Байеса, позволяют проводить рассуждения в условиях неопределенности. В этом смысле байесовский подход к теории вероятностей можно рассматривать как обобщение классической булевой логики.
 +
|}
-
'''Цели курса''':
+
Курс читается студентам [[ВМиК МГУ|ВМиК МГУ]], начиная с 2007 года. Курс не требует от студентов дополнительной математической подготовки, выходящей за пределы первых двух курсов университетского образования, все необходимые понятия вводятся в ходе лекций.
-
* Ознакомление с классическими методами обработки данных, особенностями их применения на практике и их недостатками
+
-
* Представление современных проблем теории машинного обучения
+
-
* Введение в байесовские методы машинного обучения
+
-
* Изложение последних достижений в области практического использования байесовских методов
+
-
* Напоминание основных результатов из смежных дисциплин (теория кодирования, анализ, матричные вычисления, статистика, линейная алгебра, теория вероятностей, случайные процессы)
+
-
 
+
-
Курс читается студентам [[ВМиК МГУ|ВМиК МГУ]], начиная с 2007 года. Курс не требует от студентов дополнительной математической подготовки, выходящей за пределы первых двух курсов университетского образования, все необходимые понятия вводятся в ходе лекций. В ходе чтения курса студенты будут ознакомлены с передним краем научных исследований в теории машинного обучения и существующими проблемами.
+
== Расписание на 2011–2012 учебный год ==
== Расписание на 2011–2012 учебный год ==

Версия 18:02, 5 августа 2011


Курс посвящен т.н. байесовским методам, применяемых для решения различных задач машинного обучения (классификации, прогнозирования, восстановления регрессии), которые в настоящее время активно развиваются в мире. Байесовский подход к теории вероятностей позволяет эффективно учитывать те или иные предпочтения пользователя при построении решающих правил прогноза. В частности, здесь удается решать задачи селекции признаков, подбора коэффициентов регуляризации и структурных параметров без комбинаторного перебора. В байесовском подходе вероятность интерпретируется как мера незнания, а не как объективная случайность. Простые правила оперирования с вероятностью, такие как формула полной вероятности и формула Байеса, позволяют проводить рассуждения в условиях неопределенности. В этом смысле байесовский подход к теории вероятностей можно рассматривать как обобщение классической булевой логики.

Курс читается студентам ВМиК МГУ, начиная с 2007 года. Курс не требует от студентов дополнительной математической подготовки, выходящей за пределы первых двух курсов университетского образования, все необходимые понятия вводятся в ходе лекций.

Расписание на 2011–2012 учебный год

В осеннем семестре 2011 года спецкурс читается на ВМиК МГУ ....

Дата Название лекции Материалы
 ?? сентября 2011 Введение в курс. Постановки практических задач, рассматриваемых в курсе.

Оценка за курс

В рамках курса студентам предлагается выполнить два практических задания. Выполнение этих заданий является обязательным условием для допуска к экзамену и, соответственно, успешной сдачи курса. Итоговая оценка за курс вычисляется по формуле 0.25*(оценка за первое задание)+0.25*(оценка за второе задание)+0.5*(оценка за экзамен).

Программа курса

Различные постановки задачи машинного обучения

Обзор задач анализа данных: классификация, регрессия, кластеризация, идентификация. Примеры. Историческая справка. Основные проблемы теории распознавания образов: переобучение, противоречивость информации, малый объем выборки. Иллюстративные примеры переобучения, связь переобучения и объема выборки.

Ликбез: основные понятия теории вероятностей (математическое ожидание, дисперсия, ковариационная матрица, плотность вероятности, функция правдоподобия), метод максимального правдоподобия.

Байесовский подход к теории вероятностей. Примеры байесовских рассуждений.

Частотный и вероятностный подходы к теории вероятностей. Интерпретация вероятности как меры нашего незнания, сравнение байесовских рассуждений с логическими. Байесовские сети и основные задачи в них. Пример жизненной ситуации «Джон и колокольчик для воров». Вывод формул для апостериорных вероятностей.

Ликбез: условная вероятность, формула Байеса и ее применение, формула полной вероятности.

Акинатор. Комментарии к первому практическому заданию.

Принцип работы игры Акинатор. Выдача первого задания.

EM-алгоритм.

ЕМ алгоритм для задачи разделения смеси нормальных распределений. EM-алгоритм в общем виде. EM-алгоритм как покоординатный подъем.

Ликбез: Дифференцирование по матрице и по вектору.

Задача выбора модели на примере выбора коэффициента регуляризации, ядровой функции, настройки структурных параметров алгоритма обучения. Основные методы выбора модели.

Общая постановка проблемы выбора модели, ее философский характер. Конкретные примеры структурных параметров. Кросс-валидация. Теория Вапника-Червоненкиса, емкость алгоритмов обучения. Принцип минимальной длины описания, его эквивалентность максимуму регуляризованного правдоподобия. Информационные критерии Акаике и Байеса-Шварца, область их применения.

Ликбез: теорема Шеннона и оптимальная длина описания.

Решение задачи выбора модели по Байесу. Обоснованность модели. Полный байесовский вывод.

Вывод формул для принятия решения. Принцип наибольшей обоснованности как метод максимального правдоподобия для моделей. Половинчатость данного подхода, полный вывод по Байесу. Интерпретация понятия обоснованности, ее геометрический смысл, бессмысленность сколь-угодно гибкого решающего правила, иллюстративные примеры, связь с принципом Оккама.

Ликбез: принцип Оккама, ad hoc гипотезы.

Метод релевантных векторов

Метод релевантных векторов, вывод формул для регрессии. Приближение Лапласа для оценки обоснованности в случае задачи классификации, его достоинства и недостатки. Свойства решающего правила RVM.

Ликбез: матричные тождества обращения, тождество Вудбери.

Приближенные способы байесовского вывода: вариационный подход.

Приближенные методы байесовского вывода. Минимизация дивергенции Кульбака-Лейблера и факторизованное приближение. Идея вариационного подхода, вывод формул для вариационной линейной регрессии.

Ликбез: дивергенция Кульбака-Лейблера, гамма-распределение.

Приближенные способы байесовского вывода: методы Монте-Карло с марковскими цепями.

Взятие интегралов методами Монте-Карло, голосование по апостериорному распределению вместо точечной оценки. Схема Гиббса. Гибридные методы Монте-Карло.

Ликбез: случайные процессы.

Байесовский метод главных компонент.

Байесовская смесь нормальных распределений.

Автоматический выбор количества компонент в смеси.

Приближенные способы байесовского вывода: подход распространения ожидания (Expectation Propagation).

Литература

  1. Ветров Д.П., Кропотов Д.А. Байесовские методы машинного обучения, учебное пособие по спецкурсу, 2007 (Часть 1, PDF 1.22МБ; Часть 2, PDF 1.58МБ)
  2. Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006.
  3. Mackay D.J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
  4. Tipping M. Sparse Bayesian Learning. Journal of Machine Learning Research, 1, 2001, pp. 211-244.
  5. Шумский С.А. Байесова регуляризация обучения. В сб. Лекции по нейроинформатике, часть 2, 2002.
  6. Ветров Д.П., Кропотов Д.А. Алгоритмы выбора моделей и синтеза коллективных решений в задачах классификации, основанные на принципе устойчивости. — М.: УРСС, 2006.

Страницы курса прошлых лет

2010 год

См. также

Курс «Структурные методы анализа изображений и сигналов»

Спецсеминар «Байесовские методы машинного обучения»

Математические методы прогнозирования (кафедра ВМиК МГУ)

Личные инструменты