Математические методы распознавания образов (курс лекций, В.В.Китов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Метод опорных векторов)
(Программа курса)
 
Строка 28: Строка 28:
=Программа курса=
=Программа курса=
-
==Первый семестр==
+
==Осенний семестр==
===[https://yadi.sk/i/NWVXfPIV3Q3TtD Введение в машинное обучение]===
===[https://yadi.sk/i/NWVXfPIV3Q3TtD Введение в машинное обучение]===
Строка 66: Строка 66:
===[https://yadi.sk/i/rDn3NOIFtDc4WQ Усовершенствования бустинга]===
===[https://yadi.sk/i/rDn3NOIFtDc4WQ Усовершенствования бустинга]===
-
==Второй семестр==
+
==Весенний семестр==
===[https://yadi.sk/i/retsLM0q3Q3UK8 Байесовское решающее правило. Предположение наивного Байеса. Генеративные и дискриминативные модели. Примеры генеративных моделей]===
===[https://yadi.sk/i/retsLM0q3Q3UK8 Байесовское решающее правило. Предположение наивного Байеса. Генеративные и дискриминативные модели. Примеры генеративных моделей]===

Текущая версия

Содержание

Курс посвящен алгоритмам машинного обучения (machine learning), которые сами настраиваются на известных данных, выделяя их характерную структуру и взаимосвязи между ними, для их прогнозирования, анализа, компактного описания и визуализации. Основной акцент курса сделан на задачах предсказания дискретных величин (классификация) и непрерывных величин (регрессия), хотя в курсе также рассматриваются смежные области - эффективное снижение размерности пространства, выделение наиболее значимых признаков для предсказания, методы оценивания и сравнения вероятностных распределений, рекомендательные системы и планирование экспериментов.

Лектор: Виктор Китов

Семинарист: Евгений Соколов

Курс читается студентам 3 курса кафедры «Математические методы прогнозирования» ВМиК МГУ, магистрам, зачисленным на эту кафедру, и не проходивших ранее аналогичных курсов, а также для всех желающих. На материал данного курса опираются последующие кафедральные курсы.

По изложению, рассматриваются математические основы методов, лежащие в их основе предположения о данных, взаимосвязи методов между собой и особенности их практического применения.

Курс сопровождается семинарами, раскрывающими дополнительные темы курса и отрабатывающими навыки практического применения рассматриваемых методов. Практическое использование методов машинного обучения в основном будет вестись с использованием языка python и соответствующих библиотек для научных вычислений.

От студентов требуются знания линейной алгебры, математического анализа, теории вероятностей, математической статистики и методов оптимизации. Практические задания должны выполняться с использованием языка Python и его научных библиотек.


Экзамен

Билеты для экзамена. Осень 2019.

(финальная версия, совпадает с предварительной)

Программа курса

Осенний семестр

Введение в машинное обучение

Метод ближайших центроидов и K ближайших соседей

Сложность моделей. Подготовка данных

Метрики близости

Оптимизация метода K ближайших соседей

Метод главных компонент

Свойства симметричных матриц, положительно определенные матрицы, векторное дифференцирование.

Линейная регрессия

Метод стохастического градиентного спуска

Линейная классификация

Метод опорных векторов

+вывод двойственной задачи классификации опрорных векторов

Обобщения методов через ядра Мерсера

+ вывод двойственной задача для регрессии опорных векторов

Оценивание классификаторов

Решающие деревья

Ансамбли прогнозирующих алгоритмов. Смещение и дисперсия моделей

Бустинг

Усовершенствования бустинга

Весенний семестр

Байесовское решающее правило. Предположение наивного Байеса. Генеративные и дискриминативные модели. Примеры генеративных моделей

Отбор признаков

Выпуклые функции

Перенос стиля изображений

EM-алгоритм

Смеси распределений

Разделение смеси многомерных нормальных распределений

Тематические модели

Вывод EM для PLSA

Сингулярное разложение

Доказательство основных свойств.

Ядерно-сглаженные оценки плотности

Кластеризация

Обнаружение аномалий

Рекомендательные системы

Активное обучение

Рекомендуемые ресурсы по Python

Личные инструменты