Многомерная интерполяция и аппроксимация на основе теории случайных функций

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Метод машинного обучения.)
(Метод машинного обучения.)
Строка 28: Строка 28:
{{eqno|103}}
{{eqno|103}}
<p align="center"><tex>f^*(x)=q_1K_f(x-x_1)+q_2K_f(x-x_2)+...+q_kK_f(x-x_k)\;,x\in R^n</tex></p>
<p align="center"><tex>f^*(x)=q_1K_f(x-x_1)+q_2K_f(x-x_2)+...+q_kK_f(x-x_k)\;,x\in R^n</tex></p>
 +
 +
Функцию <tex>K_f(\tau)</tex> из (103) определим как (104): <br\>
 +
{{eqno|104}}
 +
<p align="center"><tex>K_f(\tau)=C_K(\parallel\tau\parallel^2\ln(\frac{\parallel\tau\parallel^2}{t})+n)</tex></p>
== Демонстрация в среде Matlab. ==
== Демонстрация в среде Matlab. ==

Версия 10:37, 28 июля 2009

Содержание

Вступление

(в настоящий момент идет ввод и редактирование статьи, в силу того, что объем довольно значителен а опыта разметки еще нет (прошу прощения за это), сначала планирую выложить описание самого итогового метода, чтобы читатели смогли при желании с ним ознакомиться, затем примеры реализации функций и демонстрации в Matlab, а затем теоретическую часть с обоснованием)

Данную статью условно можно поделить на две части.
  • Первая часть посвящена использованию основ теории случайных функций применительно к задачам многомерной интерполяции и аппроксимации, а также машинному обучению и их теоретическому обоснованию. Цель теоретической части показать, что машинное обучение в его парадигме “обучения с учителем”, задачи многомерной интерполяции и аппроксимации, могут быть обобщены на основе теории случайных функций.
  • Во второй части изложены практические выводы из положений первой части в виде законченного метода машинного обучения (метода многомерной интерполяции и аппроксимации). Если читателя интересуют сугубо практические вопросы, Вы можете перейти сразу к изложению метода.
  • Предложенный метод позволяет получить точное решение задачи многомерной интерполяции или аппроксимации (“обучение с учителем”) гарантирующее оптимальность (при определенных минимальных допущениях, указанных в теоретической части). Метод достаточно прост и сводится к системе линейных уравнений, что может у читателя не знакомого с вопросом без изучения теоретической части вызвать подозрения в работоспособности или обобщающей способности метода. Но смею Вас уверить, что столь простая математическая конструкция в данном случае никак не ограничивает возможности. Если постараться объяснить кратко, то способности метода обеспечивает “специальная функция”, полученная в теоретической части, применение которой в системе линейных уравнений гарантированно обеспечивает оптимальное, с точки зрения аппарата случайных функций, решение. Использование данной функции позволяет сводить задачи многомерной интерполяции и аппроксимации или самые разнообразные задачи машинного обучения (с определенными допущениями) к решению системы линейных уравнений, гарантируя оптимальность полученного решения, отсутствие переобучения, осцилляций интерполянта и других нежелательных эффектов (если говорить более строго, то в реальных вычислениях используется лишь приближение теоретической “идеальной” функции в используемой части спектра, функция, которую можно записать алгебраически).

Подход к многомерной интерполяции и аппроксимации на основе теории случайных функций.

Введение.

Многомерная интерполяция.

Дисперсия случайной функции. Множество реализаций, удовлетворяющих узлам интерполяции.

Многомерная аппроксимация.

Выводы.

Метод машинного обучения.

Выпишем отдельно ключевые выражения, полученные в первой части в виде законченного метода.

  • Пусть последовательность x_1,x_2,...,x_k\;(x_i\in R^n) представляет собой набор входных векторов для обучения. Пусть соответствующие им y_1,y_2,...,y_k\;(y_i\in R) представляют собой набор выходных значений. Если значения на выходе представляют собой не один, а набор значений (вектора), то представленные преобразования можно рассмотреть последовательно для каждого из выходных параметров.
  • Метод позволяет определить функцию, связывающую значения на входе и на выходе (которая будет являться наиболее вероятной реализацией случайной функции, о чем шла речь в теоретической части). Метод также позволяет для произвольного входного значения определить среднеквадратическое отклонение ошибки, которую может дать полученная функция.

Функция, связывающая значения обучающей выборки на входе и на выходе будет определяться выражением (103):

(103)

f^*(x)=q_1K_f(x-x_1)+q_2K_f(x-x_2)+...+q_kK_f(x-x_k)\;,x\in R^n

Функцию K_f(\tau) из (103) определим как (104):

(104)

K_f(\tau)=C_K(\parallel\tau\parallel^2\ln(\frac{\parallel\tau\parallel^2}{t})+n)

Демонстрация в среде Matlab.

Личные инструменты