Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 874, весна 2011

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Задача 12: Исследование сходимости при прогнозировании нейронными сетями с боратной связью (пример))
Строка 1: Строка 1:
-
 
===Задача 8: [[Локальные методы прогнозирования, поиск инвариантного преобразования (пример)]]===
===Задача 8: [[Локальные методы прогнозирования, поиск инвариантного преобразования (пример)]]===
В проекте используются локальные методы прогнозирования
В проекте используются локальные методы прогнозирования
Строка 33: Строка 32:
===Задача 12: [[Исследование сходимости при прогнозировании нейронными сетями с боратной связью (пример)]]===
===Задача 12: [[Исследование сходимости при прогнозировании нейронными сетями с боратной связью (пример)]]===
-
Цель проекта - иследовать зависимость сходимости прогнозирования от параметров нейронной сети. Понятие обратной связи характерно для динамических систем, в которой выходной сигнал некоторого элемента истемы оказыает влияние на входной сигнал этого элемента. Входной Сигнал <tex>x_{j}(n)</tex>, внутренний сигнал <tex>x_{j}^{'}(n)</tex> и выходной сигнал <tex>y_{j}(n)</tex> связаны соотношениями
+
Цель проекта - иследовать зависимость сходимости прогнозирования от параметров нейронной сети. Понятие обратной связи характерно для динамических систем, в которой выходной сигнал некоторого элемента истемы оказыает влияние на входной сигнал этого элемента. Входной Сигнал <tex>x_{j}(n)</tex>, внутренний сигнал <tex>x_{j}^{'}(n)</tex> и выходной сигнал <tex>y_{j}(n)</tex> связаны соотношениями: <tex>y_{k}(n) = A[x_{j}^{'}(n)]</tex>; <tex>x_{j}^{'}(n) = x_{j}(n) + B[y_{j}(n)] </tex>
 +
 
===Задача 13: [[Многомерная гусеница, выбор временных рядов при прогнозировании(пример)]]===
===Задача 13: [[Многомерная гусеница, выбор временных рядов при прогнозировании(пример)]]===

Версия 22:13, 2 марта 2011

Содержание

Задача 8: Локальные методы прогнозирования, поиск инвариантного преобразования (пример)

В проекте используются локальные методы прогнозирования временных рядов. Эти методы отказываются от нахождения представления временного ряда в классе заданных функций от времени. Вместо этого прогноз осуществляется на основе данных о каком-то участке временного ряда (используется локальная В данной работе подробно исследован следующий метод (обобщение классического «ближайшего соседа»).

Пусть имеется временной ряд, и стоит задача требуется продолжить его. Предполагается, что такое продолжение определяется

«предысторией», т.е. в ряде нужно найти часть, которая после некоторого преобразования A «становится похожа» на ту часть, которую мы стремимся прогнозировать. Поиск такого преобразования A и есть цель данного проекта. Для определения степени «похожести» используется метрика B – функция близости двух отрезков временного ряда (подробнее об этом см.Локальные методы прогнозирования, поиск инвариантного преобразования (пример)). Так мы находим ближайшего соседа к нашей предыстории. В общем случае ищем несколько ближайших соседей. Продолжение запишется в виде их линейной комбинации.

Задача 9: Выравнивание временных рядов: прогнозирование с использованием DTW (пример)

Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной $\mathbf{x}=\{x_{t}\}_{t=1}^T\in\mathbb{R}^T$. Задача, сопутствующая появлению временных рядов, - сравнение одной последовательности данных с другой. Сравнение последовательностей существенно упрощается после деформации временного ряда вдоль одной из осей и его выравнивания. Dynamic time warping (DTW) представляет собой технику эффективного выравнивая временных рядов. Методы DTW используются при распознавании речи, при анализе информации в робототехнике, в промышленности, в медицине и других сферах.

Цель работы - привести пример выравнивания, ввести функционал сравнения двух временных рядов, обладающий естественными свойствами коммутативности, рефлексивности и транзитивностина. Функционал должен принимать на вход два временных ряда, а на выходе давать число, характеризующее степень их "похожести".

Задача 10: Выбор функции активации при прогнозировании нейронными сетями (пример)

Целью проекта является исследование зависимости качества прогнозирования нейронными сетями без обратной связи (одно- и многослойными перцептронами) от выбранной функции активации нейронов в сети, а также от параметров этой функции, при наличии таковых.

Функция активации определяет сигнал на выходе нейрона в зависимости от результата работы сумматора на входе нейрона. Как правило, функция активации имеет область определения (-\infty; \infty) и область значений [0; 1]. В простейшем случае, изначально предложенном и моделирующим биологический нейрон, функция активации представляет собой функцию Хевисайда:

f(x) = \begin{cases}1 & x \geq x_0\\0 & x < x_0\end{cases}

При дальнейшем развитии нейронных сетей оказалось полезным использование непрерывных функций, таких как логистическая функция \sigma(x) = \frac{1}{1+e^{-tx}} и другие функции-сигмоиды (f(x) = \frac{x}{x+\alpha}) и немонотонные функции, такие как тригонометрический синус.

Результатом проекта является оценка качества прогнозирования нейронными сетями в зависимости от типа и параметров функции активации.

Задача 12: Исследование сходимости при прогнозировании нейронными сетями с боратной связью (пример)

Цель проекта - иследовать зависимость сходимости прогнозирования от параметров нейронной сети. Понятие обратной связи характерно для динамических систем, в которой выходной сигнал некоторого элемента истемы оказыает влияние на входной сигнал этого элемента. Входной Сигнал x_{j}(n), внутренний сигнал x_{j}^{'}(n) и выходной сигнал y_{j}(n) связаны соотношениями: y_{k}(n) = A[x_{j}^{'}(n)]; x_{j}^{'}(n) = x_{j}(n) + B[y_{j}(n)]


Задача 13: Многомерная гусеница, выбор временных рядов при прогнозировании(пример)

Работа посвящена исследованию одного из методов анализа многомерных временных рядов - метода "гусеницы", также известного как Singular Spectrum Analysis или SSA. Метод можно разделить на четыре этапа - представление временного ряда в виде матрицы при помощи сдвиговой процедуры, вычисление ковариационной матрицы выборки и сингулярное ее разложение, отбор главных компонент,относящихся к различным составляющим ряда (от медленно меняющихся и периодических до шумовых), и, наконец, восстановление ряда.

Областью применения алгоритма являются задачи как метеорологии и геофизики, так и экономики и медицины. Целью данной работы является выяснение зависимости эффективности алгоритма от выбора временных рядов, используемых в его работе.

Доклады и экзамен (возможны уточнения)

  • Доклад-1 6 апреля
  • Контрольная точка 18 мая
  • Экзамен 25 мая

Список задач, черновик

  1. Непараметрическое прогнозирование (выбор ядра из набора, настройка параметров)
  2. Прогнозирование и экспоненциальное сглаживание (набор временных рядов, исследование современного состояния)
  3. Непараметрическое прогнозирование рядов с периодической составляющей (по мотивам работ прогнозирования объемов продаж)
  4. Многомерная гусеница, выбор длины и числа компонент гусеницы (сравнение сглаженного и несглаженного временного ряда)
  5. Многомерная гусеница, выбор временных рядов при прогнозировании
  6. Многомерная авторегрессия
  7. Локальные методы прогнозирования, поиск метрики
  8. Локальные методы прогнозирования, поиск инвариантного преобразования
  9. Прогнозирование с использованием пути наименьшей стоимости (DTW)
  10. Выбор функции активации при прогнозировании нейронными сетями
  11. Выбор ядра при прогнозировании функциями радиального базиса
  12. Исследование сходимости при прогнозировании нейронными сетями с обратной связью
  13. Прогнозирование функциями дискретного аргумента
  14. Прогнозирование с использованием теста Гренжера
  15. Прогнозирование и SVN – регрессия
  16. ARIMA и GARCH при прогнозировании высоковолатильных рядов с периодической составляющей (цен на электроэнергию)
  17. Прогнозирование и аппроксимация сплайнами
Личные инструменты