Нейросетевые методы обработки изображений (В.В.Китов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Время занятий)
(Время занятий)
Строка 9: Строка 9:
==Время занятий==
==Время занятий==
-
Занятия проходят в удаленном формате по понедельникам 18-00 - 19-30 по [ссылке](https://us06web.zoom.us/j/81357650774?pwd=RWZNZzl6VmJGNlo1eDJrZy9XN0xPQT09).
+
Занятия проходят в удаленном формате по понедельникам 18-00 - 19-30 по [https://us06web.zoom.us/j/81357650774?pwd=RWZNZzl6VmJGNlo1eDJrZy9XN0xPQT09 ссылке][ссылке].
Первое занятие 14 февраля.
Первое занятие 14 февраля.

Версия 17:02, 8 февраля 2022


О курсе

Спецкурс проходит на ф-те ВМиК в весеннем семестре и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо отобразить в стиле, задаваемым другим изображением. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо изменение зимней панорамы в летнюю. Для решения задачи предлагаются современные подгоды переноса стиля (style transfer) и генеративно-состязательные сети (generative adversarial networks). Эта задача широко используется в индустрии разлечений (например, мобильное приложение Prisma было самым скачиваемым на Android в странах СНГ в течение 10 дней после выхода), обработке фотографий и дизайне (функции стилизации были добавлены в Adobe Photoshop 2021), а также может применяться в мультипликации, наложении спецэффектов в фильмах, видеоиграх и средствах дополненной реальности, а также для более точной настройки методов машинного при обучении на одной предметной области, а применении модели к другой (transfer learning). Помимо изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и музыка). Основные методы стилизации были предложены в последние 7 лет и опираются на глубокие нейронные сети, базовому изучению которых посвящена начальная часть курса.

Лектор

Виктор Владимирович Китов, к.ф.-м.н., преподаватель кафедры математических методов прогнозирования ВМК МГУ. Почта: v.v.kitov(at)yandex.ru.

Время занятий

Занятия проходят в удаленном формате по понедельникам 18-00 - 19-30 по ссылке[ссылке]. Первое занятие 14 февраля.

Лекции

Введение в машинное обучение.

Градиентный спуск

Расширение выборки изображений.

Сверточные нейросети.

Основные архитектуры сверточных нейросетей (классификация).

Семантическая сегментация.

Оптимизационный метод переноса стиля.

Трансформационный метод переноса стиля.

Мульти-стилевые трансформационные модели.

Перенос стиля, основанный на патчах.

Генеративно-состязательные сети.

Приложения генеративно-состязательных сетей.

Технические улучшения стилизации.

Концептуальные улучшения стилизации.

Расширение обучающей выборки.

Стилизация видео.

Рекомендуемые ресурсы

Личные инструменты