Системы искусственного интеллекта (курс лекций, Д.В.Михайлов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Демо)
(Демо)
Строка 194: Строка 194:
* [https://portal.novsu.ru/file/1986783 Применение нейросетевых моделей BERT для ранжирования коротких текстов по близости эталону на основе оценки взаимного сходства их смыслов (реализация на Python 3.10 + блокнот Jupyter Notebook и результаты экспериментов)], в том числе [https://portal.novsu.ru/file/2123223 вариант с дообучением моделей ruSciBERT и SciRus-tiny для задач анализа смысловой близости отдельных предложений (Sentence Similarity) и текстов (Textual Similarity)].
* [https://portal.novsu.ru/file/1986783 Применение нейросетевых моделей BERT для ранжирования коротких текстов по близости эталону на основе оценки взаимного сходства их смыслов (реализация на Python 3.10 + блокнот Jupyter Notebook и результаты экспериментов)], в том числе [https://portal.novsu.ru/file/2123223 вариант с дообучением моделей ruSciBERT и SciRus-tiny для задач анализа смысловой близости отдельных предложений (Sentence Similarity) и текстов (Textual Similarity)].
-
* [https://portal.novsu.ru/file/2135027 Расширение аннотаций научных статей заданной коллекции предложениями их вводных и заключительных частей при взаимном ранжировании по близости смысловому эталону (реализация на Python 3.10 + блокноты Jupyter Notebook и результаты экспериментов)].
+
* [https://portal.novsu.ru/file/2135027 Расширение аннотаций научных статей заданной коллекции предложениями их вводных и заключительных частей при взаимном ранжировании по близости смысловому эталону (реализация на Python 3.10 + блокноты Jupyter Notebook и результаты экспериментов)], в том числе [https://portal.novsu.ru/file/2171075 вариант с возможностью удаления предложений из аннотации с целью максимизации её смысловой связности].
* [https://portal.novsu.ru/file/2161333 Расширение аннотаций научных статей предложениями их вводных и заключительных частей с максимизацией смысловой связности коллекции в целом (реализация на Python 3.10 — блокноты Jupyter Notebook и результаты экспериментов)], в том числе [https://portal.novsu.ru/file/2166914 вариант без учёта и фиксации промежуточных шагов расширения исходной аннотации].
* [https://portal.novsu.ru/file/2161333 Расширение аннотаций научных статей предложениями их вводных и заключительных частей с максимизацией смысловой связности коллекции в целом (реализация на Python 3.10 — блокноты Jupyter Notebook и результаты экспериментов)], в том числе [https://portal.novsu.ru/file/2166914 вариант без учёта и фиксации промежуточных шагов расширения исходной аннотации].

Версия 12:01, 31 августа 2024

Дисциплина «Системы искусственного интеллекта» для специальности 230105 важную роль в подготовке студентов к самостоятельной профессиональной деятельности в области интеллектуальных информационных технологий. Дисциплина «Системы искусственного интеллекта» для специальности 230105 относится к числу дисциплин специализации и читается в 9-м семестре. Она включает в себя рассмотрение основных вопросов современной теории и практики построения интеллектуальных систем (в первую очередь) символьной обработки и опирается на учебные курсы :«Дискретная математика», «Функциональное и логическое программирование», «Объектно-ориентированное программирование», «Базы данных», «Теория вычислительных процессов и структур», «Компьютерное моделирование», «Распознавание образов и обработка изображений» и «Человеко-машинное взаимодействие». Особое внимание уделяется моделированию языкового поведения человека при работе с базами знаний интеллектуальных информационно-поисковых систем.

Включение данной дисциплины в учебный план заключительного учебного семестра перед преддипломной практикой и дипломным проектированием дает возможность студенту более четко сформулировать задачу на дипломное проектирование с точки зрения перспективных направлений интеллектуальных технологий компьютерной обработки информации.

Автор — Дмитрий Владимирович Михайлов, кафедра Информационных технологий и систем Новгородского государственного университета им. Ярослава Мудрого (НовГУ).

Научный консультант — д.т.н., профессор Емельянов Геннадий Мартинович

Представленный здесь вариант курса в 2020 году лёг в основу одноимённого учебного модуля по направлению подготовки «Информатика и вычислительная техника» (бакалавриат) в НовГУ. Актуальная редакция курса представлена на портале «Дистанционные образовательные технологии обучения в НовГУ» (требуется регистрация).

Содержание

Содержание лекционных занятий

Дополнительные разделы по обработке и анализу текстов

Содержание лабораторных занятий

Дополнительные темы работ по моделям представления знаний

Демо

Инструментальные средства и библиотеки

Базы данных

Полезные ссылки

Для самоконтроля

Примерный список вопросов к экзамену.

Примечания


К сожалению, незарегистрированные пользователи не видят литературных ссылок из раздела «Демо» (данный дефект системы находится в стадии проработки). Тем не менее, Вы можете найти цитируемый источник, используя вкладку «Просмотр» на данной странице.

Личные инструменты