Нейросетевые методы обработки изображений (В.В.Китов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Лекции)
(Рекомендуемые ресурсы)
 
(12 промежуточных версий не показаны.)
Строка 7: Строка 7:
Занятия проходят в формате лекций. В процессе прохождения курса каждый студент должен сделать презентацию основных идей и подходов одной из недавних статей, посвященных стилизации изображений, а также представить свои идеи улучшений традиционных методов стилизации изображений и их обосновать.
Занятия проходят в формате лекций. В процессе прохождения курса каждый студент должен сделать презентацию основных идей и подходов одной из недавних статей, посвященных стилизации изображений, а также представить свои идеи улучшений традиционных методов стилизации изображений и их обосновать.
-
==Экзамен==
+
Пройденный спецкурс вы можете позже перезачесть в учебной части на 4м курсе (по учебному плану вам тогда нужно проходить спецкурс по выбору). Спецкурс познакомит вас с нейросетями - их основными архитектурами (многослойный персептрон, сверточная сеть, автокодировщик, генеративно-состязательные сети), что может служить преимуществом при распределении на кафедры соответствующей направленности.
-
[https://disk.yandex.ru/i/sU37mxSPkDMOvw Процедура экзамена и список билетов].
+
==Лектор==
==Лектор==
Строка 19: Строка 18:
==Время занятий==
==Время занятий==
По вторникам 16-20 - 17-55, ауд. 609.
По вторникам 16-20 - 17-55, ауд. 609.
-
Первое занятие будет 14.02.2023.
+
Первое занятие будет 20.02.2024.
==Лекции==
==Лекции==
-
[https://disk.yandex.ru/i/L3-gyBerNhNH5g Задачи глубокого обучения.]
+
[https://disk.yandex.ru/i/V2u_WSI3EhMETA Задачи глубокого обучения.]
-
[https://disk.yandex.ru/i/X92ZQYaDmJdMSA Нейросети. Многослойный персептрон.]
+
[https://disk.yandex.ru/i/Sq3fbS8dcKzxWA Нейросети. Многослойный персептрон.]
-
[https://disk.yandex.ru/i/1Myn1D-_A-nxRg Сверточные нейросети.]
+
[https://disk.yandex.ru/i/-mnCj8EseyXOUg Сверточные нейросети.]
-
[https://disk.yandex.ru/i/lZEK0TYOIg2Dhw Оптимизационный метод переноса стиля.]
+
[https://disk.yandex.ru/i/J9lZG_L9ZqVtcQ Расширение обучающей выборки.]
-
[https://disk.yandex.ru/i/lLfe3zOC0IX28Q Трансформационный метод переноса стиля.]
+
[https://disk.yandex.ru/i/p_pzkp4U9dmknA Оптимизационный метод переноса стиля.]
-
[https://disk.yandex.ru/i/9jzeENMDEA3-eA Патчевый метод переноса стиля.]
+
[https://disk.yandex.ru/i/Q9TCAc5I0Uxx4g Трансформационный метод переноса стиля.]
-
[https://disk.yandex.ru/i/4RMfxk1Lg5eC9Q Технические улучшения методов стилизации изображений.]
+
[https://disk.yandex.ru/i/rcnl8o_q09dNiQ Патчевый метод переноса стиля.]
-
[https://disk.yandex.ru/i/GJQPwB02CJXoaA Концептуальные улучшения методов стилизации изображений.]
+
[https://disk.yandex.ru/i/zmo6vx8_6n3Z0Q Технические улучшения методов стилизации изображений.]
-
[https://disk.yandex.ru/i/f7D9e7dX-iOfjA Мульти-стилевые трансформационные модели.]
+
[https://disk.yandex.ru/i/j1nf8Ck13TCavQ Концептуальные улучшения методов стилизации изображений.]
-
[https://disk.yandex.ru/i/G2nm-lSOWWRIgw Сингулярное разложение.]
+
[https://disk.yandex.ru/i/Ej2UQI4eiuNknw Мульти-стилевые трансформационные модели.]
-
[https://disk.yandex.ru/i/ng48clrTsdE_6w Семантическая сегментация.]
+
[https://disk.yandex.ru/i/it6nzR-oULcZZA Стилизация видео-данных.]
-
[https://disk.yandex.ru/i/gN5hPPNT8V8EdQ Детекция объектов и instance-сегментация.]
+
[https://disk.yandex.ru/i/SjTwiaO-gh_DWQ Генеративно-состязательные сети.]
 +
 
 +
 
 +
=Экзамен=
 +
Оценка за спецкурс ставится только по результатам устного экзамена.
=Рекомендуемые ресурсы=
=Рекомендуемые ресурсы=
-
* Примеры переноса стиля для видео: [https://www.youtube.com/watch?v=Khuj4ASldmU пример 1], [https://www.youtube.com/watch?v=vMyMUNvsGfQ пример 2], [https://www.youtube.com/watch?v=BcflKNzO31A пример 3].
+
* [https://deepmachinelearning.ru Глубокое машинное обучение], онлайн-учебник по машинному обучению и нейросетям.
-
* [https://arxiv.org/pdf/1705.04058.pdf Обзорная статья по переносу стиля для изображений.]
+
* [https://arxiv.org/pdf/1705.04058.pdf Обзорная статья по переносу стиля на изображениях.]
-
* [https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv Лекции курса в Стэнфорде по сверточным нейронным сетям.]
+
* [https://pytorch.org/tutorials/ Образовательные материалы по библиотеке PyTorch.]
-
* [http://www.pittnuts.com/2015/07/top-conferences-on-machine-learning-and-computer-vision/ Топовые конференции по машинному обучению и компьютерному зрению] (самые интересные статьи там)
+
* [https://scholar.google.ru/ Поиск google по статьям.]
* [https://scholar.google.ru/ Поиск google по статьям.]
-
* [https://pytorch.org/tutorials/ Образовательные материалы по библиотеке глубинного обучения PyTorch.]
 
-
* [http://d2l.ai/index.html Книга по глубинному обучению.]
 

Текущая версия


О курсе

Спецкурс проходит на ф-те ВМиК в весеннем семестре и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо отобразить в стиле, задаваемым другим изображением. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо преобразование фотогрфии в схематичную книжную иллюстрацию. Для решения задачи существуют современные подходы переноса стиля (style transfer) и генеративно-состязательные сети (generative adversarial networks). Эта задача широко используется в индустрии разлечений (например, мобильное приложение Prisma было самым скачиваемым на Android в странах СНГ в течение 10 дней после выхода), при обработке фотографий и дизайне (функции стилизации были добавлены в Adobe Photoshop 2021), может применяться в мультипликации, наложении спецэффектов в фильмах, видеоиграх и средствах дополненной реальности, а также для более точной настройки методов машинного при обучении на одной предметной области, а применении модели к другой (transfer learning). Помимо изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и музыка). Основные методы стилизации были предложены в последние 7 лет и опираются на глубокие нейронные сети, базовому изучению которых посвящена начальная часть курса.

Занятия проходят в формате лекций. В процессе прохождения курса каждый студент должен сделать презентацию основных идей и подходов одной из недавних статей, посвященных стилизации изображений, а также представить свои идеи улучшений традиционных методов стилизации изображений и их обосновать.

Пройденный спецкурс вы можете позже перезачесть в учебной части на 4м курсе (по учебному плану вам тогда нужно проходить спецкурс по выбору). Спецкурс познакомит вас с нейросетями - их основными архитектурами (многослойный персептрон, сверточная сеть, автокодировщик, генеративно-состязательные сети), что может служить преимуществом при распределении на кафедры соответствующей направленности.

Лектор

Виктор Владимирович Китов, к.ф.-м.н., преподаватель кафедры математических методов прогнозирования ВМК МГУ.

Телеграм: VictorKitov

Почта: v.v.kitov(at)yandex.ru.

Время занятий

По вторникам 16-20 - 17-55, ауд. 609. Первое занятие будет 20.02.2024.

Лекции

Задачи глубокого обучения.

Нейросети. Многослойный персептрон.

Сверточные нейросети.

Расширение обучающей выборки.

Оптимизационный метод переноса стиля.

Трансформационный метод переноса стиля.

Патчевый метод переноса стиля.

Технические улучшения методов стилизации изображений.

Концептуальные улучшения методов стилизации изображений.

Мульти-стилевые трансформационные модели.

Стилизация видео-данных.

Генеративно-состязательные сети.


Экзамен

Оценка за спецкурс ставится только по результатам устного экзамена.

Рекомендуемые ресурсы

Личные инструменты