Нейросетевые методы обработки изображений (В.В.Китов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Экзамен)
(Рекомендуемые ресурсы)
 
(2 промежуточные версии не показаны)
Строка 48: Строка 48:
=Экзамен=
=Экзамен=
-
Оценка за спецкурс ставится по результатам устного экзамена. В процессе экзамена выделяется 30 минут на подготовку. В процессе подготовки можно пользоваться материалами курса.
+
Оценка за спецкурс ставится только по результатам устного экзамена.
-
 
+
-
[https://disk.yandex.ru/i/Moup8xwqoYAWpQ Билеты к экзамену]
+
=Рекомендуемые ресурсы=
=Рекомендуемые ресурсы=
-
* Примеры переноса стиля для видео: [https://www.youtube.com/watch?v=Khuj4ASldmU пример 1], [https://www.youtube.com/watch?v=vMyMUNvsGfQ пример 2], [https://www.youtube.com/watch?v=BcflKNzO31A пример 3].
+
* [https://deepmachinelearning.ru Глубокое машинное обучение], онлайн-учебник по машинному обучению и нейросетям.
-
* [https://arxiv.org/pdf/1705.04058.pdf Обзорная статья по переносу стиля для изображений.]
+
* [https://arxiv.org/pdf/1705.04058.pdf Обзорная статья по переносу стиля на изображениях.]
-
* [https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv Лекции курса в Стэнфорде по сверточным нейронным сетям.]
+
* [https://pytorch.org/tutorials/ Образовательные материалы по библиотеке PyTorch.]
-
* [http://www.pittnuts.com/2015/07/top-conferences-on-machine-learning-and-computer-vision/ Топовые конференции по машинному обучению и компьютерному зрению] (самые интересные статьи там)
+
* [https://scholar.google.ru/ Поиск google по статьям.]
* [https://scholar.google.ru/ Поиск google по статьям.]
-
* [https://pytorch.org/tutorials/ Образовательные материалы по библиотеке глубинного обучения PyTorch.]
 
-
* [http://d2l.ai/index.html Книга по глубинному обучению.]
 

Текущая версия


О курсе

Спецкурс проходит на ф-те ВМиК в весеннем семестре и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо отобразить в стиле, задаваемым другим изображением. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо преобразование фотогрфии в схематичную книжную иллюстрацию. Для решения задачи существуют современные подходы переноса стиля (style transfer) и генеративно-состязательные сети (generative adversarial networks). Эта задача широко используется в индустрии разлечений (например, мобильное приложение Prisma было самым скачиваемым на Android в странах СНГ в течение 10 дней после выхода), при обработке фотографий и дизайне (функции стилизации были добавлены в Adobe Photoshop 2021), может применяться в мультипликации, наложении спецэффектов в фильмах, видеоиграх и средствах дополненной реальности, а также для более точной настройки методов машинного при обучении на одной предметной области, а применении модели к другой (transfer learning). Помимо изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и музыка). Основные методы стилизации были предложены в последние 7 лет и опираются на глубокие нейронные сети, базовому изучению которых посвящена начальная часть курса.

Занятия проходят в формате лекций. В процессе прохождения курса каждый студент должен сделать презентацию основных идей и подходов одной из недавних статей, посвященных стилизации изображений, а также представить свои идеи улучшений традиционных методов стилизации изображений и их обосновать.

Пройденный спецкурс вы можете позже перезачесть в учебной части на 4м курсе (по учебному плану вам тогда нужно проходить спецкурс по выбору). Спецкурс познакомит вас с нейросетями - их основными архитектурами (многослойный персептрон, сверточная сеть, автокодировщик, генеративно-состязательные сети), что может служить преимуществом при распределении на кафедры соответствующей направленности.

Лектор

Виктор Владимирович Китов, к.ф.-м.н., преподаватель кафедры математических методов прогнозирования ВМК МГУ.

Телеграм: VictorKitov

Почта: v.v.kitov(at)yandex.ru.

Время занятий

По вторникам 16-20 - 17-55, ауд. 609. Первое занятие будет 20.02.2024.

Лекции

Задачи глубокого обучения.

Нейросети. Многослойный персептрон.

Сверточные нейросети.

Расширение обучающей выборки.

Оптимизационный метод переноса стиля.

Трансформационный метод переноса стиля.

Патчевый метод переноса стиля.

Технические улучшения методов стилизации изображений.

Концептуальные улучшения методов стилизации изображений.

Мульти-стилевые трансформационные модели.

Стилизация видео-данных.

Генеративно-состязательные сети.


Экзамен

Оценка за спецкурс ставится только по результатам устного экзамена.

Рекомендуемые ресурсы

Личные инструменты