Оценка параметров смеси моделей
Материал из MachineLearning.
(→Оценка параметров смеси линейных моделей) |
(→Смотри также) |
||
(3 промежуточные версии не показаны) | |||
Строка 154: | Строка 154: | ||
Дальнейшая минимизация зависит от конкретного семейства из обобщенного класса, вида функции <tex>b(\theta)</tex>. | Дальнейшая минимизация зависит от конкретного семейства из обобщенного класса, вида функции <tex>b(\theta)</tex>. | ||
+ | |||
+ | |||
+ | ====Пример смеси логистических моделей==== | ||
+ | [[Изображение:logit_convergence.png]] | ||
+ | |||
+ | На изображениях классификация одной и двумя моделями. Розовым показына плотность распределения зависимой переменной. | ||
==Оценка параметров смеси экспертов== | ==Оценка параметров смеси экспертов== | ||
Строка 164: | Строка 170: | ||
Компоненты <tex> \pi_k(\vec{x})</tex> называются функциями селективности, а <tex> p(y | \vec{x}, \vec{w}_k)</tex> экспертами. Функция селективности отвечает за компетентность эксперта в определенной области. | Компоненты <tex> \pi_k(\vec{x})</tex> называются функциями селективности, а <tex> p(y | \vec{x}, \vec{w}_k)</tex> экспертами. Функция селективности отвечает за компетентность эксперта в определенной области. | ||
+ | |||
+ | Оказывается (Jordan and Jacobs, 1994), что наличие функции компетенции допускает решение задачи с помощью <tex>EM</tex>-алгоритма, причем, <tex>E</tex>-шаг остается прежним: | ||
+ | |||
+ | <tex> | ||
+ | \gamma_{ik} = \frac{\pi_k(\vec{x}^i) p(y^i | \vec{x}^i, \vec{w}_k)}{\sum_{s=1}^{l} \pi_s(\vec{x}^i) p(y^i | \vec{x}^i, \vec{w}_s)}. | ||
+ | </tex> | ||
+ | |||
+ | <tex>M</tex>-шаг принимает вид: | ||
+ | |||
+ | <tex> | ||
+ | \pi_k = \frac{1}{m} \sum_{i=1}^{m} g_{ik}. | ||
+ | </tex> | ||
+ | |||
+ | <tex> | ||
+ | \sum_{i=1}^{m} \gamma_{ik}(\vec{x}^i) \ln p(y^i | \vec{x}^i, \vec{w}^k) \rightarrow \max_{\vec{w}^k}. | ||
+ | </tex> | ||
+ | |||
+ | Последенее уравнение можно решить с помощью метода итеративно перевзвешенных наименьших квадратов ([[Метод_наименьших_квадратов_с_итеративным_пересчётом_весов | IRLS]]). | ||
== Литература == | == Литература == | ||
Строка 174: | Строка 198: | ||
* [[ЕМ-алгоритм, его модификации и обобщения]] | * [[ЕМ-алгоритм, его модификации и обобщения]] | ||
- | {{ | + | {{ЗаданиеВыполнено|Кирилл Павлов|В.В. Стрижов|26 сентября 2011|pavlov99|Strijov}} |
[[Категория:Практика и вычислительные эксперименты]] | [[Категория:Практика и вычислительные эксперименты]] |
Текущая версия
|
Введение
В случае, когда одной модели для описания данных не хватает, используют смеси моделей. Предполагается, что исходная зависимость выражается формулой:
где --- вероятность принадлежности модели .
Далее предполагается, что объекты в выборке независимы и плотность совместного распределения преобразуется в произведение плотностей распределения каждого объекта.
Введем функцию правдоподобия как логарифм плотности вероятности данных.
Обозначим через вероятность того, что объект был порожден компонентой , --- вероятность того, что -объект порожден -компонентой. Каждый объект был порожден какой-либо моделью, по формуле полной вероятности
Для произвольного объекта вероятность его получения моделью по формуле условной вероятности равна:
Подставим это равенство в формулу Байеса для
Для определения параметров смеси необходимо решить задачу максимизации правдоподобия , для этого выпишем функцию Лагранжа:
Приравняем производные по и функции Лагранжа к нулю получим, что:
и оптимизационная задача для нахождения параметров модели имеет вид:
В общем случае задача оптимизации трудна, для её решения используют EM алгоритм, заключающийся в итеративном повторении двух шагов. На -шаге вычисляются ожидаемые значения вектора скрытых переменных по текущему приближения параметров моделей . На -шаге решается задача максимизации правдоподобия при начальном приближении параметров моделей и значений .
-шагу соответствует выражение
-шаг заключается в оптимизации параметров распределений.
Формула на -шаге может упроститься для случая конкретного распределения. Для упрощения дальнейших рассуждений введем обозначения
Оценка параметров смеси линейных моделей
Линейная модель имеет вид:
где --- вектор нормально распределенных ошибок. В данной постановке вектор является нормальным с математическим ожиданием
, и корреляционной матрицей .
Шаг алгоритма примет следующий вид:
Первое слагаемое не зависит от , его можно не учитывать. Преобразование второго слагаемого дает
Задача квадратична по , решение находится аналитически
Пример смеси линейных моделей
Оценка параметров смеси обобщенно-линейных моделей
В случае обобщенных линейный моделей функция плотности распределения имеет вид
-шаг алгоритма сводится к максимизации
Последнее слагаемое не зависит от параметров модели , что позволяет упростить функционал
Дальнейшая минимизация зависит от конкретного семейства из обобщенного класса, вида функции .
Пример смеси логистических моделей
На изображениях классификация одной и двумя моделями. Розовым показына плотность распределения зависимой переменной.
Оценка параметров смеси экспертов
Понятие смеси экспертов было введено Якобсом (Jacobs) в 1991г. Предполагается, что параметры смеси являются функциями от объекта, т.е.
Компоненты называются функциями селективности, а экспертами. Функция селективности отвечает за компетентность эксперта в определенной области.
Оказывается (Jordan and Jacobs, 1994), что наличие функции компетенции допускает решение задачи с помощью -алгоритма, причем, -шаг остается прежним:
-шаг принимает вид:
Последенее уравнение можно решить с помощью метода итеративно перевзвешенных наименьших квадратов ( IRLS).
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006., p 654 - 676
- Nelder, John; Wedderburn, Robert (1972). "Generalized Linear Models". Journal of the Royal Statistical Society. Series A (General) (Blackwell Publishing)
- Воронцов~К.~В. "Курс лекций по машинному обучению". стр. 32 - 37
Смотри также
Данная статья была создана в рамках учебного задания.
См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |