Графические модели (курс лекций)/2013/Задание 1
Материал из MachineLearning.
м («Графические модели (курс лекций)/Задание 1» переименована в «Графические модели (курс лекций)/2013/Задание 1») |
м (ссылка на главную страницу) |
||
Строка 1: | Строка 1: | ||
{{stop | Задание находится в стадии разработки. Не приступайте к выполнению задания, пока это объявление не убрано.}} | {{stop | Задание находится в стадии разработки. Не приступайте к выполнению задания, пока это объявление не убрано.}} | ||
+ | {{Main|Графические модели (курс лекций)}} | ||
'''Начало выполнения задания''': 15 февраля 2013 г.<br> | '''Начало выполнения задания''': 15 февраля 2013 г.<br> | ||
'''Срок сдачи''': {{важно|1 марта 2013 г., 23:59.}} | '''Срок сдачи''': {{важно|1 марта 2013 г., 23:59.}} |
Версия 17:43, 15 февраля 2013
Задание находится в стадии разработки. Не приступайте к выполнению задания, пока это объявление не убрано. |
Начало выполнения задания: 15 февраля 2013 г.
Срок сдачи: 1 марта 2013 г., 23:59.
Рассмотрим модель посещаемости студентами одного курса лекции. Пусть аудитория данного курса состоит из студентов профильной кафедры, а также студентов других кафедр. Обозначим через количество студентов, распределившихся на профильную кафедру, а через — количество студентов других кафедр на курсе. Пусть студенты профильной кафедры посещают курс с некоторой вероятностью , а студенты остальных кафедр — с вероятностью . Обозначим через количество студентов на данной лекции. Тогда случайная величина есть сумма двух случайных величин, распределенных по биномиальному закону и соответственно. Пусть далее на лекции по курсу ведется запись студентов. При этом каждый студент записывается сам, а также, быть может, записывает своего товарища, которого на лекции на самом деле нет (просьба не воспринимать это как руководство к действию в реальности!!). Пусть студент записывает своего товарища с некоторой вероятностью . Обозначим через общее количество записавшихся на данной лекции. Тогда случайная величина представляет собой сумму и случайной величины, распределенной по биномиальному закону . Для завершения задания вероятностной модели осталось определить априорные вероятности для и для . Пусть обе эти величины распределены равномерно в своих интервалах и . Таким образом, мы определили следующую вероятностную модель:
Модель 1
, , |
Рассмотрим несколько упрощенную версию модели 1. Известно, что биномиальное распределение при большом количестве испытаний и маленькой вероятности успеха может быть с высокой точностью приближено пуассоновским распределением с . Известно также, что сумма двух пуассоновских распределений с параметрами и есть пуассоновское распределение с параметром . Таким образом, мы можем сформулировать вероятностную модель, которая является приближенной версией модели 1:
Модель 2
,
,
,
,
.
Рассмотрим теперь модель посещаемости нескольких лекций курса. Будем считать, что посещаемости отдельных лекций являются независимыми. Тогда:
Модель 3
, , |
По аналогии с моделью 2 можно сформулировать упрощенную модель для модели 3:
Модель 4
,
,
,
,
.
Задание состоит из трех вариантов. Распределение студентов по вариантам см. ниже.
Содержание |
Вариант 1
Рассматривается модель 2 с параметрами . Провести на компьютере следующие исследования:
- Найти математические ожидания и дисперсии априорных распределений для всех параметров .
- Пронаблюдать, как происходит уточнение прогноза для величины по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений при параметрах , равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого.
- Определить, какая из величин вносит больший вклад в уточнение прогноза для величины (в смысле дисперсии распределения). Для этого убедиться в том, что и для любых допустимых значений . Найти множество точек таких, что . Являются ли множества и линейно разделимыми?
- Провести временные замеры по оценке всех необходимых распределений .
Взять в качестве диапазона допустимых значений для величины интервал , а для величины — интервал .
При оценке выполнения задания будет учитываться эффективность программного кода. В частности, временные затраты на расчет отдельного распределения не должны превышать одной секунды.
Необходимо дополнительно провести все исследования для точной модели 1 и сравнить результаты с аналогичными для модели 2. Привести пример оценки параметра, в котором разница между моделью 1 и 2 проявляется в большой степени.
Вариант 2
Рассматривается модель 2 с параметрами . Провести на компьютере следующие исследования:
- Найти математические ожидания и дисперсии априорных распределений для всех параметров .
- Пронаблюдать, как происходит уточнение прогноза для величины по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений при параметрах , равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого.
- Определить, при каких соотношениях параметров изменяется относительная важность параметров для оценки величины . Для этого найти множество точек при , равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого. Являются ли множества и линейно разделимыми?
- Провести временные замеры по оценке всех необходимых распределений .
Взять в качестве диапазона допустимых значений для величины интервал , а для величины — интервал .
При оценке выполнения задания будет учитываться эффективность программного кода. В частности, временные затраты на расчет отдельного распределения не должны превышать одной секунды.
Необходимо дополнительно провести все исследования для точной модели 1 и сравнить результаты с аналогичными для модели 2. Привести пример оценки параметра, в котором разница между моделью 1 и 2 проявляется в большой степени.
Вариант 3
Рассматривается модель 4 с параметрами . Провести на компьютере следующие исследования:
- Найти математические ожидания и дисперсии априорных распределений для всех параметров .
- Реализовать генератор выборки из модели при заданных значениях параметров .
- Пронаблюдать, как происходит уточнение прогноза для величины по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений , где выборка 1) сгенерирована из модели при параметрах , равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого и 2) , где равно мат.ожиданию своего априорного распределения, округленного до ближайшего целого. Провести аналогичный эксперимент, если дополнительно известно значение . Сравнить результаты двух экспериментов.
- Провести временные замеры по оценке всех необходимых распределений .
Взять в качестве диапазона допустимых значений для величины интервал , а для величины — интервал .
При оценке выполнения задания будет учитываться эффективность программного кода. В частности, временные затраты на расчет отдельного распределения не должны превышать одной секунды.
Необходимо дополнительно провести все исследования для точной модели 3 и сравнить результаты с аналогичными для модели 4.
Оформление задания
Выполненное задание следует отправить письмом по адресу bayesml@gmail.com с заголовком письма «Задание 1 <Номер_группы> <ФИО>». Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом. Новые версии будут рассматриваться только в самом крайнем случае.
В качестве программной среды реализации настоятельно рекомендуется использовать MATLAB. Тем не менее, никаких ограничений на выбор среды реализации не накладывается.
Присланный вариант задания должен содержать в себе:
- ФИО исполнителя, номер группы и номер варианта задания.
- Текстовый файл в формате PDF, содержащий описание проведенных исследований.
- Все исходные коды с необходимыми комментариями.
- Дополнительные комментарии или материалы, если необходимо.
Исходные коды должны включать в себя реализацию оценки распределений в виде отдельных функций. Прототип для функции оценки распределения для модели 2 имеет следующий вид:
Оценка распределения для модели 2 | ||||
---|---|---|---|---|
[p, c, m, v] = p2c_ad(a, d, params) | ||||
ВХОД | ||||
| ||||
ВЫХОД | ||||
|
Прототипы функций для других распределений выглядят аналогично. Если в распределении переменных до или после | несколько, то в названии функции они идут в алфавитном порядке. Функция для оценки распределения для модели 3 имеет название p3b_ad, а входной параметр является одномерным массивом длины .
Генерация из распределения для модели 3 | ||||
---|---|---|---|---|
d = m3_generate(N, a, b, params) | ||||
ВХОД | ||||
| ||||
ВЫХОД | ||||
|
Распределение студентов по вариантам
Студентам, которые не нашли себя в этом списке, следует написать письмо по адресу bayesml@gmail.com с запросом номера варианта. В этом письме не забудьте указать свою фамилию и номер группы.
№ п/п | Студент | Вариант |
---|---|---|
1 | Аллаярова Альбина Венировна | 2 |
2 | Березин Алексей Андреевич | 1 |
3 | Борисов Михаил Викторович | 3 |
4 | Гавриков Михаил Игоревич | 3 |
5 | Зак Евгений Михайлович | 3 |
6 | Исмагилов Тимур Ниязович | 2 |
7 | Кондрашкин Дмитрий Андреевич | 1 |
8 | Куракин Александр Владимирович | 1 |
9 | Лобачева Екатерина Максимовна | 2 |
10 | Любимцева Мария Михайловна | 2 |
11 | Малышева Екатерина Константиновна | 1 |
12 | Морозова Дарья Юрьевна | 2 |
13 | Нижибицкий Евгений Алексеевич | 2 |
14 | Новиков Максим Сергеевич | 3 |
15 | Огнева Дарья Сергеевна | 2 |
16 | Остапец Андрей Александрович | 3 |
17 | Потапенко Анна Александровна | 1 |
18 | Ромов Петр Алексеевич | 1 |
19 | Фонарев Александр Юрьевич | 1 |
20 | Шаймарданов Ильдар Рифарович | 3 |