Мультиномиальное распределение независимых случайных величин

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Определение)
(Вектор средних и матрица ковариации)
Строка 19: Строка 19:
:<tex>{n \choose {y_1 \ldots y_k}} \equiv \frac{n!}{y_1! \ldots y_k!}</tex> — [[мультиномиальный коэффициент]] (полиномиальный коэффициент).
:<tex>{n \choose {y_1 \ldots y_k}} \equiv \frac{n!}{y_1! \ldots y_k!}</tex> — [[мультиномиальный коэффициент]] (полиномиальный коэффициент).
-
== Вектор средних и матрица ковариации ==
 
-
[[Математическое ожидание]] случайной величины <tex>Y_j</tex> имеет вид:
 
-
<tex>\mathbb{E}[Y_j] = np_j</tex>.
 
-
Диагональные элементы [[Ковариационная матрица|матрицы ковариации]] <tex>\Sigma = (\sigma_{ij})</tex> являются [[Дисперсия случайной величины|дисперсиями]] биномиальных случайных величин, а следовательно
 
-
: <tex>\sigma_{jj}=\mathrm{D}[Y_j] = np_j(1-p_j),\; j =1,\ldots, k</tex>.
 
-
Для остальных элементов имеем
 
-
: <tex>\sigma_{ij} = \mathrm{cov}(Y_i,Y_j) = -np_ip_j,\; i \not= j</tex>.
 
-
[[Ранг матрицы]] ковариации мультиномиального распределения равен <tex>k-1</tex>.
 
==Вектор средних и матрица ковариации==
==Вектор средних и матрица ковариации==

Версия 13:59, 30 октября 2013

Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.

Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.

Определение

Пусть X_1,\ldots, X_n - независимые одинаково распределённые случайные величины, такие, что их распределение задаётся функцией вероятности:

\mathbb{P}(X_i = j) = p_j,\; j=1,\ldots, k.

Интуитивно событие \{X_i = j\} означает, что испытание с номером i привело к исходу j. Пусть случайная величина Y_j равна количеству испытаний, приведших к исходу j:

Y_j = \sum_{i=1}^n \mathbf{1}_{\{X_i = j\}},\; j = 1,\ldots, k.

Тогда распределение вектора \mathbf{Y} = (Y_1,\ldots,Y_k)^{\top} имеет функцию вероятности p_{\mathbf{Y}}(\mathbf{y}) = \left\{\begin{matrix}
{n \choose {y_1 \ldots y_k}} p_1^{y_1}\ldots p_k^{y_k}, & \sum\limits_{j=1}^k y_i = n \\
0, & \sum\limits_{j=1}^k y_i \not= n 
\end{matrix}
\right., \quad \mathbf{y} = (y_1,\ldots, y_k)^{\top} \in \mathbb{N}^k_0,где

{n \choose {y_1 \ldots y_k}} \equiv \frac{n!}{y_1! \ldots y_k!}мультиномиальный коэффициент (полиномиальный коэффициент).


Вектор средних и матрица ковариации

Математическое ожидание случайной величины Y_jимеет вид: \mathbb{E}[Y_j] = np_j. Диагональные элементы матрицы ковариации \Sigma = (\sigma_{ij}) являются дисперсиями биномиальных случайных величин, а следовательно

\sigma_{jj}=\mathrm{D}[Y_j] = np_j(1-p_j),\; j =1,\ldots, k.

Для остальных элементов имеем

\sigma_{ij} = \mathrm{cov}(Y_i,Y_j) = -np_ip_j,\; i \not= j.

Ранг матрицы ковариации мультиномиального распределения равен k-1.

См. также

Личные инструменты