Метод Бенджамини-Хохберга
Материал из MachineLearning.
(→Реализации) |
|||
(1 промежуточная версия не показана) | |||
Строка 20: | Строка 20: | ||
===Ограничения=== | ===Ограничения=== | ||
- | Статистики <tex>T_i</tex> независимы или выполняется следующее свойство ( | + | Статистики <tex>T_i</tex> независимы или выполняется следующее свойство (PRDS<ref name="prds"> Benjamini, Y., & Yekutieli, D. (2001). [http://projecteuclid.org/euclid.aos/1013699998 The control of the false discovery rate in multiple testing under dependency]. Annals of Statistics, 29(4), 1165–1188. </ref> on <tex>T_i,\: i \in M_0</tex>): |
::<tex>\operator{P}(X\in D|T_i=x) </tex> не убывает по <tex>x\:\forall i\in M_0</tex>, | ::<tex>\operator{P}(X\in D|T_i=x) </tex> не убывает по <tex>x\:\forall i\in M_0</tex>, | ||
где <tex>M_0</tex> - множество индексов верных гипотез, <tex>D</tex> - произвольное возрастающее множество, то есть, такое, что из <tex>x\in D</tex> и <tex>y \geq x</tex> следует <tex>y\in D</tex> | где <tex>M_0</tex> - множество индексов верных гипотез, <tex>D</tex> - произвольное возрастающее множество, то есть, такое, что из <tex>x\in D</tex> и <tex>y \geq x</tex> следует <tex>y\in D</tex> | ||
Строка 91: | Строка 91: | ||
== Реализации == | == Реализации == | ||
- | * MATLAB: Benjamini and Hochberg/Yekutieli Procedure for Controlling False Discovery Rate <ref name="bhypcfdr"> | + | * MATLAB: Benjamini and Hochberg/Yekutieli Procedure for Controlling False Discovery Rate <ref name="bhypcfdr"> http://www.mathworks.com/matlabcentral/fileexchange/27418-benjamini-hochbergyekutieli-procedure-for-controlling-false-discovery-rate</ref> - реализация на MathWorks.com |
* R: функция p.adjust<ref name="padj"> http://www.inside-r.org/r-doc/stats/p.adjust</ref> (с параметром <code>method="BH"</code>) из стандартного пакета <code>stats</code> позволяет получить модифицированные уровни значимости с учетом поправки метода Бенджамини-Хохберга. | * R: функция p.adjust<ref name="padj"> http://www.inside-r.org/r-doc/stats/p.adjust</ref> (с параметром <code>method="BH"</code>) из стандартного пакета <code>stats</code> позволяет получить модифицированные уровни значимости с учетом поправки метода Бенджамини-Хохберга. | ||
Текущая версия
Метод Бенджамини-Хохберга[1][1] — один из методов контроля ожидаемой доли ложных отклонений гипотез (FDR) который утверждает, что при определенных ограничениях на статистики гипотез для достижения контроля FDR на уровне достаточно, чтобы отвергались гипотезы , для которых , где — количество гипотез.
Содержание |
Определение
Пусть — семейство гипотез, а — соответствующие им достигаемые уровни значимости. Обозначим за - число отвергнутых гипотез, а за - число неверно отвергнутых гипотез, т.е. число ошибок первого рода.
Ожидаемая доля ложных отклонений гипотез, или FDR, определяется следующим образом
Контроль над FDR на уровне означает, что
Метод Бенджамини-Хохберга
Это нисходящая процедура(по аналогии с методом Холма и методом Шидака-Холма) со следующими уровнями значимости
Пусть — уровни значимости , упорядоченные по неубыванию, — соответствующие гипотезы. Процедура метода Бенджамини-Хохберга определена следующим образом.
- Шаг 1. Если , принять гипотезы и остановиться. Иначе, если , отвергнуть гипотезу и продолжить проверку оставшихся гипотез на уровне значимости .
- Шаг 2. Если , принять гипотезы и остановиться. Иначе, если , отвергнуть гипотезу и продолжить проверку оставшихся гипотез на уровне значимости .
- И т.д.
Метод обеспечивает контроль над FDR на уровне при нижеследующих условиях.
Ограничения
Статистики независимы или выполняется следующее свойство (PRDS[1] on ):
- не убывает по ,
где - множество индексов верных гипотез, - произвольное возрастающее множество, то есть, такое, что из и следует
Альтернативная постановка
Переходим к модифицированным достигаемым уровням значимости:
Пример
для проверки используем одновыборочный критерий Стьюдента.
С поправкой Холма(метод Холма):
Верных Неверных Всего Принятых 150 24 174 Отвергнутых 0 26 26 Всего 150 50 200
С методом Бенджамини-Хохберга:
Верных Неверных Всего Принятых 148 4 152 Отвергнутых 2 46 48 Всего 150 50 200
Реализации
- MATLAB: Benjamini and Hochberg/Yekutieli Procedure for Controlling False Discovery Rate [1] - реализация на MathWorks.com
- R: функция p.adjust[1] (с параметром
method="BH"
) из стандартного пакетаstats
позволяет получить модифицированные уровни значимости с учетом поправки метода Бенджамини-Хохберга.
Ссылки