Участник:IShibaev
Материал из MachineLearning.
(→Весна 2017, 6-й семестр) |
|||
Строка 11: | Строка 11: | ||
''В работе рассматривается задача множественного выравнивания третичных белковых структур. Задача множественного выравнивания состоит в том, чтобы для множества структур получить совмещающие их преобразования, минимизируя сумму попарных расстояний между атомами. Для решения задачи множественного выравнивания применяется алгоритм попарного выравнивания, решающий эту задачу для случая двух структур. В случае наличия в наборе структур разных конформаций алгоритм попарного выравнивания, вообще говоря, не находит глобального минимума в задаче множественного выравнивания ( решение задачи множественного выравнивания). В работе рассматривается матричная оптимизационная постановка задачи множественного выравнивания, проводятся вычислительные эксперименты (на выборке белковых структур из базы данных RCSB PDB), сравнение качества работы алгоритма попарного выравнивания и алгоритмов, полученных в результате выпуклой релаксации оптимизационной задачи множественного выравнивания. Отбрасываются невыпуклые ограничения на ранг и ортогональность, что позволяет свести задачу к выпуклой.'' | ''В работе рассматривается задача множественного выравнивания третичных белковых структур. Задача множественного выравнивания состоит в том, чтобы для множества структур получить совмещающие их преобразования, минимизируя сумму попарных расстояний между атомами. Для решения задачи множественного выравнивания применяется алгоритм попарного выравнивания, решающий эту задачу для случая двух структур. В случае наличия в наборе структур разных конформаций алгоритм попарного выравнивания, вообще говоря, не находит глобального минимума в задаче множественного выравнивания ( решение задачи множественного выравнивания). В работе рассматривается матричная оптимизационная постановка задачи множественного выравнивания, проводятся вычислительные эксперименты (на выборке белковых структур из базы данных RCSB PDB), сравнение качества работы алгоритма попарного выравнивания и алгоритмов, полученных в результате выпуклой релаксации оптимизационной задачи множественного выравнивания. Отбрасываются невыпуклые ограничения на ранг и ортогональность, что позволяет свести задачу к выпуклой.'' | ||
+ | |||
+ | |||
+ | [https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group474/Shibaev2017MultipleStructureAlignment/doc/Shibaev2017MultipleStructureAlignment.pdf?format=raw pdf] |
Версия 09:56, 30 сентября 2017
Шибаев Иннокентий Андреевич
- МФТИ, ФУПМ, 474
- Кафедра «Интеллектуальные системы»
- Направление «Интеллектуальный анализ данных»
Весна 2017, 6-й семестр
Выпуклые релаксации для задачи множественного выравнивания (проблема синхронизации в SO(3))
В работе рассматривается задача множественного выравнивания третичных белковых структур. Задача множественного выравнивания состоит в том, чтобы для множества структур получить совмещающие их преобразования, минимизируя сумму попарных расстояний между атомами. Для решения задачи множественного выравнивания применяется алгоритм попарного выравнивания, решающий эту задачу для случая двух структур. В случае наличия в наборе структур разных конформаций алгоритм попарного выравнивания, вообще говоря, не находит глобального минимума в задаче множественного выравнивания ( решение задачи множественного выравнивания). В работе рассматривается матричная оптимизационная постановка задачи множественного выравнивания, проводятся вычислительные эксперименты (на выборке белковых структур из базы данных RCSB PDB), сравнение качества работы алгоритма попарного выравнивания и алгоритмов, полученных в результате выпуклой релаксации оптимизационной задачи множественного выравнивания. Отбрасываются невыпуклые ограничения на ранг и ортогональность, что позволяет свести задачу к выпуклой.