Нейросетевые методы обработки изображений (В.В.Китов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
__NOTOC__
__NOTOC__
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
==Объявление==
 +
К следующему четвергу до 23-55 всем посещающим спецкурс и желающим получить по нему оценку необходимо прислать письмо:
 +
* на адрес v.v.kitov(at)yandex.ru
 +
* озаглавленное "Отчет по НМОИ"
 +
* к письму должны быть приложена презентация, содержащая:
 +
** обзор некоторой статьи по переносу стиля или смежной теме. Цитируемость статьи должна быть >=10 на [https://scholar.google.ru/ google scholar].
 +
** ваши идеи возможных улучшений технологии перенося стиля (не обязательно по выбранной статье), приветствуется конкретика (формулы, алгоритмические изменения).
 +
* к письму должна быть приложена статья, по которой вы делаете доклад
 +
* '''если вы хотите идти под мое научное руководство - также приложите к письму заполненную [https://yadi.sk/d/zDfL-RP9Vgk3og анкету].'''
 +
 +
==О курсе==
Спецкурс проходит на ф-те ВМиК весной 2019 года и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо преобразовать так, чтобы сохранить изображенные на нем предметы, но стилистику их отображения взять из другого изображения или группы изображений. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо изменение зимней панорамы в летнюю. Эта задача может применяться в мультипликации, наложении спецэффектов в фильмах и видеоиграх, симуляторах и средствах дополненной реальности, а также для более точной настройки методов машинного обучения работе с изображениями за счет вариации их стиля и адаптации стиля под целевую предметную область. Помимо отдельных изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и т.д.). Основные методы стилизации были предложены в последние 5 лет и опираются на глубинные нейронные сети, базовому изучению которых посвящена существенная часть курса.
Спецкурс проходит на ф-те ВМиК весной 2019 года и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо преобразовать так, чтобы сохранить изображенные на нем предметы, но стилистику их отображения взять из другого изображения или группы изображений. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо изменение зимней панорамы в летнюю. Эта задача может применяться в мультипликации, наложении спецэффектов в фильмах и видеоиграх, симуляторах и средствах дополненной реальности, а также для более точной настройки методов машинного обучения работе с изображениями за счет вариации их стиля и адаптации стиля под целевую предметную область. Помимо отдельных изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и т.д.). Основные методы стилизации были предложены в последние 5 лет и опираются на глубинные нейронные сети, базовому изучению которых посвящена существенная часть курса.
-
+
 
==Лектор==
==Лектор==
[[Участник:Victor Kitov|Виктор Владимирович Китов]], к.ф.-м.н., преподаватель кафедры [[Mmp|математических методов прогнозирования]] [http://cmc.msu.ru ВМК МГУ]. Почта: v.v.kitov(at)yandex.ru.
[[Участник:Victor Kitov|Виктор Владимирович Китов]], к.ф.-м.н., преподаватель кафедры [[Mmp|математических методов прогнозирования]] [http://cmc.msu.ru ВМК МГУ]. Почта: v.v.kitov(at)yandex.ru.

Версия 08:15, 30 марта 2019


Объявление

К следующему четвергу до 23-55 всем посещающим спецкурс и желающим получить по нему оценку необходимо прислать письмо:

  • на адрес v.v.kitov(at)yandex.ru
  • озаглавленное "Отчет по НМОИ"
  • к письму должны быть приложена презентация, содержащая:
    • обзор некоторой статьи по переносу стиля или смежной теме. Цитируемость статьи должна быть >=10 на google scholar.
    • ваши идеи возможных улучшений технологии перенося стиля (не обязательно по выбранной статье), приветствуется конкретика (формулы, алгоритмические изменения).
  • к письму должна быть приложена статья, по которой вы делаете доклад
  • если вы хотите идти под мое научное руководство - также приложите к письму заполненную анкету.

О курсе

Спецкурс проходит на ф-те ВМиК весной 2019 года и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо преобразовать так, чтобы сохранить изображенные на нем предметы, но стилистику их отображения взять из другого изображения или группы изображений. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо изменение зимней панорамы в летнюю. Эта задача может применяться в мультипликации, наложении спецэффектов в фильмах и видеоиграх, симуляторах и средствах дополненной реальности, а также для более точной настройки методов машинного обучения работе с изображениями за счет вариации их стиля и адаптации стиля под целевую предметную область. Помимо отдельных изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и т.д.). Основные методы стилизации были предложены в последние 5 лет и опираются на глубинные нейронные сети, базовому изучению которых посвящена существенная часть курса.

Лектор

Виктор Владимирович Китов, к.ф.-м.н., преподаватель кафедры математических методов прогнозирования ВМК МГУ. Почта: v.v.kitov(at)yandex.ru.

Расписание

Занятия проходят по пятницам в 16-20 в ауд. 606. Первое занятие - 22.02.2019.

Программа

  • Введение в машинное и глубинное обучение
  • Алгоритмы настройки нейросетей. Регуляризация.
  • Основные архитектуры сверточных нейросетей.
  • Методы стилизации, основанные на сближении распределений.
  • Методы стилизации, основанные на сопоставлении участков изображений.
  • Методы стилизации видеопоследовательностей.
  • Генеративно-состязательные сети и их применения для стилизации и повышения качества изображений.


Материалы лекций

Введение в машинное обучение.

Презентация.

Многослойный персептрон.

Презентация.

Сверточные нейросети.

Презентация.

Модели переноса стиля.

Презентация.

Улучшения переноса стиля 1.

Презентация.

Улучшения переноса стиля 2.

Презентация.

Мультистилевой онлайн перенос стиля.

Презентация.

Расширение обучающей выборки.

Презентация.

Фрагментарный перенос стиля.

Презентация.

Перенос стиля для видео.

Презентация.

Рекомендуемые ресурсы

Личные инструменты