Участник:Slimper/Песочница

Материал из MachineLearning.

< Участник:Slimper(Различия между версиями)
Перейти к: навигация, поиск
м (декатегоризация)
 
(28 промежуточных версий не показаны.)
Строка 1: Строка 1:
-
'''Ранговые критерии''' — это статистические тесты, в которых вместо выборочных значений используются их [[ранг]]и(номера элементов в упорядоченной по возрастанию выборке). Большинство ранговых критериев являются
+
'''Критерий Бартелса (Bartels test)''' — [[непараметрический статистический критерий]], используемый для проверки случайности последовательности наблюдаемых значений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения. Критерий Бартелса можно применять для анализа регрессионных остатков.
-
[[Проверка статистических гипотез#Типы статистических критериев| непараметрическими]], хотя
+
Также его можно применять при анализе [[временной ряд|временных рядов]] для выявления тренда.
-
среди ранговых критериев встречаются и параметрические, например, одновыборочный [[критерий Колмогорова-Смирнова]].
+
-
==Классификация ранговых критериев ==
+
== Примеры задач ==
-
''Ранговые критерии'' можно разбить на группы в зависимости от типа [[Проверка статистических гипотез| статистической гипотезы]], которую они проверяют. Некоторые критерии входят в несколько групп, так как их можно использовать для проверки различных гипотез.
+
'''Пример 1.'''
-
=== Критерии для проверки гипотезы случайности ===
+
Ряд значений состоит из подсчитанного на протяжении нескольких лет количества туристов, посещавших страну в течение года.
-
=== Критерии для проверки гипотезы симметрии ===
+
Требуется установить, являются ли число туристов, случайным, или оно
-
Пусть задана [[простая выборка]]
+
подчиняется какой-то закономерности.
-
<tex> x_1, \dots x_n </tex>
+
-
=== Критерии для проверки гипотезы некорреллированности==
+
-
=== Критерии для проверки гипотез сдвига и масштаба ===
+
-
Проверяется гипотеза сдвига, согласно которой распределения двух выборок имеют одинаковую форму и отличаются только сдвигом на константу.
+
-
Пусть заданы две выборки
+
-
<tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>,взятые из неизвестных непрерывных распределений <tex>F(x)</tex> и <tex>G(y)</tex> соответственно.
+
-
Нулевая гипотеза — <tex>H_0: \quad F(x) = G(y - \mu)</tex>
+
== Описание критерия ==
 +
Заданы выборка <tex>x^n = (x_1,\ldots,x_n),x_i \in \mathbb{R}</tex>.
-
Наиболее частая альтернативная гипотеза - <tex>H_1: \quad F(x) \ne G(y - \mu)</tex>.
+
'''[[Нулевая гипотеза]]''' <tex>H_0:\;</tex> выборка <tex>x^n</tex> [[простая выборка|простая]], то
 +
есть все наблюдения <tex>x_i</tex> — независимы и одинаково распределены.
-
'''Список критериев'''
+
'''Статистика критерия:'''
-
* [[Критерий Уилкоксона-Манна-Уитни]]
+
# Построить [[вариационный ряд]] выборки <tex>x^{(1)}(x_1,\ldots,x_n)</tex> и найти ранги <tex>r(x_i)</tex> всех элементов.
-
* [[Критерий Фишера-Йэйтса-Терри-Гёфдинга]]
+
# Статистика критерия Бартелса вычисляется по формуле:
-
* [[Критерий Ван дер Вардена ]]
+
::<tex>B = \frac{ \sum_{i = 1}^n (r(x_i) - r(x_{i + 1}) )^2 }{ \sum(R_i - \frac{n + 1}{2})^2}</tex>
-
* [[Медианный критерий]]
+
-
* [[Критерий Хаги]]
+
-
* [[E-Критерий]]
+
-
Кроме критериев, проверяющих гипотезу сдвига для двух совокупностей, существует большое
+
Варианты критерия (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
-
количество тестов для проверки гипотезы сдвига среди нескольких совокупностей. Далее приведены
+
-
некоторые из них:
+
-
*[[Критерий Крускала-Уоллиса]]
+
-
*[[Критерий Краузе]]
+
-
*[[Критерий Пейджа]]
+
-
*[[Критерий Вилкоксона-Вилкокс]]
+
-
*[[Критерий Джонкхиера]]
+
-
*[[Критерий Неменьи]]
+
-
*[[Критерий Хеттманспергера ]]
+
-
*[[Критерий Фридмена-Кендалла-Бэбингтона-Смита]]
+
-
*[[Критерий Хеттманспергера]]
+
-
*[[Критерий Андерсона-Каннемана-Шэча]]
+
-
*[[Критерий Кендалла-Эренберга]]
+
-
*[[Критерий Ходжеса-Лемана-Сена]]
+
-
'''Критерии масштаба'''
+
* двусторонний критерий (против альтернативы, что данные не случайны)
-
*[[Критерий Ансари—Бредли]]
+
::если <tex> B \in \left[ B_{n,\alpha/2},\, B_{n,1-\alpha/2} \right] </tex>, то нулевая гипотеза отвергается;
-
*[[Критерий Сижела-Тьюки]]
+
-
*[[Критерий Критерий Кейпена]]
+
-
*[[Критерий Клотца]]
+
-
*[[Критерий Сэвиджа]]
+
-
*[[Критерий Муда]]
+
-
*[[Критерий Сукхатме]]
+
-
*[[Критерий Сэндвика-Олсона]]
+
-
*[[Критерий Камата]]
+
-
*[[Критерий Бхапкара-Дешпанде]]
+
 +
* левосторонний критерий(против альтернативы, что наблюдения положительно коррелированы)
 +
::если <tex> B < B_{n,\alpha} </tex>, то нулевая гипотеза отвергается;
 +
* правосторонний критерий(против альтернативы, что наблюдения отрицательно коррелированы)
 +
::если <tex> B > B_{n,\alpha} </tex>, то нулевая гипотеза отвергается;
 +
Здесь <tex> B_{n,\alpha} </tex> -- это <tex>\alpha</tex>-[[квантиль]] табличного распределения статистики Бартелса с параметром <tex>n</tex>.
 +
===Асимптотический критерий ===
 +
Распределение статистики Бартелса асимптотически нормально
 +
с матожиданием <tex>\mathbb{E}B = 2</tex> и дисперсией
 +
::<tex> \mathbb{D}B = \frac{4(n - 2)(5n^2 - 2n - 9)}{5n(n + 1)(n - 1)^2} </tex>
 +
 +
Поэтому при
 +
<tex>n \ge 20</tex> используется нормированная статистика Бартелса
 +
::<tex>B' = \frac{B - \mathbb{E}B}{\sqrt{\mathbb{D}B} } </tex>
 +
 +
== Свойства критерия Бартелса==
 +
Бартелс с помошью численного моделирования показал , что во многих случаях критерий Бартелса имеет большую мощность, чем [[Критерий Вальда-Вольфовица|критерий серий]].
 +
 +
== История ==
 +
Критерий был предложен Бартелсом в 1982 году.
== Литература ==
== Литература ==
 +
 +
# ''Gibbons J. D., Chakraborti S.'' Nonparametric Statistical Inference, 4th Ed. — CRC, 2003 — 608&nbsp;с.
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.:&nbsp;Физматлит, 2006. — 816&nbsp;с.
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.:&nbsp;Физматлит, 2006. — 816&nbsp;с.
-
# ''Hajek J., Sidak Z., Sen K. P.'' Theory of rank tests(second edition). — Academic Press, 1999. - 450&nbsp;p.
 
-
== См. также ==
+
== См. также ==
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
* [[Статистика (функция выборки)]]
* [[Статистика (функция выборки)]]
 +
* [[Критерий Вальда-Вольфовица|Критерий серий]] — другой критерий для проверки случайности ряда наблюдений
== Ссылки ==
== Ссылки ==
-
 
{{Задание|Slimper|Vokov|08 января 2010}}
{{Задание|Slimper|Vokov|08 января 2010}}

Текущая версия

Критерий Бартелса (Bartels test)непараметрический статистический критерий, используемый для проверки случайности последовательности наблюдаемых значений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения. Критерий Бартелса можно применять для анализа регрессионных остатков. Также его можно применять при анализе временных рядов для выявления тренда.

Содержание

[убрать]

Примеры задач

Пример 1. Ряд значений состоит из подсчитанного на протяжении нескольких лет количества туристов, посещавших страну в течение года. Требуется установить, являются ли число туристов, случайным, или оно подчиняется какой-то закономерности.

Описание критерия

Заданы выборка x^n = (x_1,\ldots,x_n),x_i \in \mathbb{R}.

Нулевая гипотеза H_0:\; выборка x^n простая, то есть все наблюдения x_i — независимы и одинаково распределены.

Статистика критерия:

  1. Построить вариационный ряд выборки x^{(1)}(x_1,\ldots,x_n) и найти ранги r(x_i) всех элементов.
  2. Статистика критерия Бартелса вычисляется по формуле:
B = \frac{ \sum_{i = 1}^n (r(x_i) - r(x_{i + 1}) )^2 }{ \sum(R_i - \frac{n + 1}{2})^2}

Варианты критерия (при уровне значимости \alpha):

  • двусторонний критерий (против альтернативы, что данные не случайны)
если  B \in \left[ B_{n,\alpha/2},\, B_{n,1-\alpha/2} \right] , то нулевая гипотеза отвергается;
  • левосторонний критерий(против альтернативы, что наблюдения положительно коррелированы)
если  B < B_{n,\alpha} , то нулевая гипотеза отвергается;
  • правосторонний критерий(против альтернативы, что наблюдения отрицательно коррелированы)
если  B > B_{n,\alpha} , то нулевая гипотеза отвергается;

Здесь  B_{n,\alpha} -- это \alpha-квантиль табличного распределения статистики Бартелса с параметром n.

Асимптотический критерий

Распределение статистики Бартелса асимптотически нормально с матожиданием \mathbb{E}B = 2 и дисперсией

 \mathbb{D}B = \frac{4(n - 2)(5n^2 - 2n - 9)}{5n(n + 1)(n - 1)^2}

Поэтому при n \ge 20 используется нормированная статистика Бартелса

B' = \frac{B - \mathbb{E}B}{\sqrt{\mathbb{D}B} }

Свойства критерия Бартелса

Бартелс с помошью численного моделирования показал , что во многих случаях критерий Бартелса имеет большую мощность, чем критерий серий.

История

Критерий был предложен Бартелсом в 1982 году.

Литература

  1. Gibbons J. D., Chakraborti S. Nonparametric Statistical Inference, 4th Ed. — CRC, 2003 — 608 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.

См. также

Ссылки

Данная статья является непроверенным учебным заданием.
Студент: Участник:Slimper
Преподаватель: Участник:Vokov
Срок: 08 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты