Метод релевантных векторов
Материал из MachineLearning.
(уточнение, викификация, категория) |
м (ссылки) |
||
Строка 1: | Строка 1: | ||
- | '''Метод релевантных векторов (RVM, Relevance vector machine)''' — алгоритм [[классификация|классификации]] и восстановления [[регрессия|регрессии]], основанный на [[ | + | '''Метод релевантных векторов (RVM, Relevance vector machine)''' — алгоритм [[классификация|классификации]] и восстановления [[регрессия|регрессии]], основанный на [[Связанный Байесовский вывод|байесовском выводе второго уровня]]. В методе используется [[обобщенная линейная модель]] с введенной [[регуляризация|регуляризацией]], которая, в Байесовкой интерпретации, равносильна введению априорных распределений на вектор параметров. Главной особенностью является то, что все параметры регуляризируются независимо. |
== Решаемая задача == | == Решаемая задача == | ||
Строка 88: | Строка 88: | ||
[[Категория:Байесовские методы]] | [[Категория:Байесовские методы]] | ||
[[Категория:Линейные классификаторы]] | [[Категория:Линейные классификаторы]] | ||
- | [[Категория: | + | [[Категория:Регрессионный анализ]] |
Текущая версия
Метод релевантных векторов (RVM, Relevance vector machine) — алгоритм классификации и восстановления регрессии, основанный на байесовском выводе второго уровня. В методе используется обобщенная линейная модель с введенной регуляризацией, которая, в Байесовкой интерпретации, равносильна введению априорных распределений на вектор параметров. Главной особенностью является то, что все параметры регуляризируются независимо.
Содержание |
Решаемая задача
- Имеется выборка , где вектор признаков , а целевая переменная . Требуется для нового объекта предсказать значение целевой переменной
- Предполагается, что , где , а
Подход к решению
- Следуя байесовскому подходу, воспользуемся методом максимума апостериорной плотности:
- Для получения разреженного решения введем в качестве априорного распределения на параметры нормальное распределение с диагональной матрицей ковариации с различными элементами на диагонали:
- Здесь . Такое априорное распределение соответствует независимой регуляризации вдоль каждого веса со своим параметром регуляризации
- Для обучения модели (настройки параметров ) воспользуемся идеей максимизации обоснованности:
Оптимизация обоснованности
- Заметив, что обоснованность является сверткой двух нормальных распределений, можно представить подынтегральную функцию по формуле Тейлора в точке максимума правдоподобия. Обозначив , после некоторых преобразований получим:
- Обозначив, для удобства, , и "в лоб" раскрывая предыдущее выражение, получим:
- ,
- где — матрица обобщенных признаков.
- Теперь, приравнивая нулю производные обоснованности по , получим итерационные формулы для пересчета параметров:
- Здесь
- Параметр можно интерпретировать как степень, в которой соответствующий вес определяется данными или регуляризацией. Если велико, то вес существенно предопределен априорным распределением, и . С другой стороны, для малых значений значение веса полностью определяется данными, .
Принятие решения
- Зная значения можно вычислить апостериорное распределение целевой переменной:
Обсуждение метода
- На практике процесс обучения обычно требует 20-50 итераций. На каждой итерации вычисляется (это требует обращения матрицы порядка ), а также пересчитываются значения (пратктически не требует времени). Как следствие, скорость обучения падает примерно в 20-50 раз по сравнению с линейной регрессией.
- При использовании ядровых функций в качестве обобщенных признаков необходимо проводить скользящий контроль для различных значений параметров ядра. В этом случае время обучения возрастает еще в несколько раз.
- На выходе алгоритма получается разреженное решение, т. е. только небольшое подмножество исходной выборки входит в решающее правило.
- Кроме значения целевой переменной, алгоритм выдает также и дисперсию прогноза.
Псевдокод алгоритма RVM
Вход: Обучающая выборка , матрица обобщенных признаков
Выход: Параметры решающего правила:
- Инициализация:
- для повторять
- для повторять
- если или , то
- иначе
- если или , то
См. также
Литература
- Tipping M. The relevance vector machine // Advances in Neural Information Processing Systems, San Mateo, CA. — Morgan Kaufmann, 2000.
Данная статья была создана в рамках учебного задания.
См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |