Метод Холма

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Пример)
(Определение)
 
(1 промежуточная версия не показана)
Строка 4: Строка 4:
Пусть <tex>p_{(1)}\leq \ldots \leq p_{(m)}</tex> — уровни значимости <tex>p_i</tex>, упорядоченные по неубыванию, <tex>H_{(1)}, \ldots, H_{(m)}</tex> — соответствующие <tex>p_{(i)}</tex> гипотезы. Процедура Холма определена следующим образом.
Пусть <tex>p_{(1)}\leq \ldots \leq p_{(m)}</tex> — уровни значимости <tex>p_i</tex>, упорядоченные по неубыванию, <tex>H_{(1)}, \ldots, H_{(m)}</tex> — соответствующие <tex>p_{(i)}</tex> гипотезы. Процедура Холма определена следующим образом.
-
: Шаг 1. Если <tex>p_{(1)}\geq\frac{\alpha}{m}</tex>, принять гипотезы <tex>H_{(1)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(1)}<\frac{\alpha}{m}</tex>, отвергнуть гипотезу <tex>H_{(1)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\alpha/(m-1)</tex>.
+
: Шаг 1. Если <tex>p_{(1)}\geq\frac{\alpha}{m}</tex>, принять гипотезы <tex>H_{(1)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(1)}<\frac{\alpha}{m}</tex>, отвергнуть гипотезу <tex>H_{(1)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\frac{\alpha}{m-1}</tex>.
-
: Шаг 2. Если <tex>p_{(2)}\geq\frac{\alpha}{m-1}</tex>, принять гипотезы <tex>H_{(2)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(2)}<\frac{\alpha}{m-1}</tex>, отвергнуть гипотезу <tex>H_{(2)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\alpha/(m-2)</tex>.
+
: Шаг 2. Если <tex>p_{(2)}\geq\frac{\alpha}{m-1}</tex>, принять гипотезы <tex>H_{(2)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(2)}<\frac{\alpha}{m-1}</tex>, отвергнуть гипотезу <tex>H_{(2)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\frac{\alpha}{m-2}</tex>.
: И т.д.
: И т.д.
Процедура обеспечивает <tex>\operator{FWER}\leq\alpha</tex> при любом характере зависимости между <tex>p_i.</tex>
Процедура обеспечивает <tex>\operator{FWER}\leq\alpha</tex> при любом характере зависимости между <tex>p_i.</tex>
Строка 33: Строка 33:
== См. также ==
== См. также ==
-
[[Поправка Бонферрони]]
+
* [[Поправка Бонферрони]]
-
[[FWER]]
+
* [[FWER]]
[[Категория:Прикладная статистика]]
[[Категория:Прикладная статистика]]
[[Категория:Множественная проверка гипотез]]
[[Категория:Множественная проверка гипотез]]

Текущая версия

Метод Холма-Бонферрони (также Метод Холма, Поправка Холма-Бонферрони) — один из методов контроля групповой вероятности ошибки (первого рода). Является равномерно более мощным, чем поправка Бонферрони и решает проблему падения мощности при росте числа гипотез.

Содержание

Определение

Пусть p_{(1)}\leq \ldots \leq p_{(m)} — уровни значимости p_i, упорядоченные по неубыванию, H_{(1)}, \ldots, H_{(m)} — соответствующие p_{(i)} гипотезы. Процедура Холма определена следующим образом.

Шаг 1. Если p_{(1)}\geq\frac{\alpha}{m}, принять гипотезы H_{(1)}, \ldots, H_{(m)} и остановиться. Иначе, если p_{(1)}<\frac{\alpha}{m}, отвергнуть гипотезу H_{(1)} и продолжить проверку оставшихся гипотез на уровне значимости \frac{\alpha}{m-1}.
Шаг 2. Если p_{(2)}\geq\frac{\alpha}{m-1}, принять гипотезы H_{(2)}, \ldots, H_{(m)} и остановиться. Иначе, если p_{(2)}<\frac{\alpha}{m-1}, отвергнуть гипотезу H_{(2)} и продолжить проверку оставшихся гипотез на уровне значимости \frac{\alpha}{m-2}.
И т.д.

Процедура обеспечивает \operator{FWER}\leq\alpha при любом характере зависимости между p_i.

Альтернативная постановка

При рассмотрении неравенств, деление может быть заменено на умножение, то есть вместо неравенств вида p_{(i)}<\frac{\alpha}{m-i+1} используются неравенства вида p \cdot (m-i+1)<\alpha.

Пример

Рассмотрим проверку 4-х гипотез при \alpha=0.05. Пусть для них получены p-value: 0.01, 0.04, 0.03 and 0.005. Будут проверены следующие неравенства:

 1. 0.005 \cdot (4 - 1 + 1) < 0.05 \qquad \Rightarrow отклоняем 4-ю нулевую гипотезу.
 2. 0.01 \cdot (4 - 2 + 1) < 0.05 \qquad \Rightarrow отклоняем 1-ю нулевую гипотезу.
 3. 0.03 \cdot (4 - 3 + 1) >= 0.05 \qquad \Rightarrow принимаем 3-ю и 2-ю нулевую гипотезы.

Реализации

  • MATLAB: функция multcompare, вычисляющая поправку Бонферрони, не поддерживает, однако, поправку Холма-Бонферрони. Реализация доступна на MATLAB File Exchange
  • R: функция p.adjust (с параметром method="holm") из стандартного пакета stats позволяет получить модифицированные уровни значимости с учетом поправки Холма-Бонферрони.

Ссылки

См. также

Личные инструменты