Критерий Уилкоксона двухвыборочный

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: '''Критерий Уилкоксона двухвыборочный''' (Wilcoxon) — непараметрический статистический критерий == Прим...)
(Описание критерия)
 
(7 промежуточных версий не показаны.)
Строка 1: Строка 1:
-
'''Критерий Уилкоксона двухвыборочный''' (Wilcoxon) — [[непараметрический статистический критерий]]
+
{{TOCright}}
-
== Примеры задач ==
+
'''Критерий Уилкоксона (Вилкоксона) двухвыборочный''' — [[непараметрический статистический критерий]], используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием [[Теория измерений|порядковой шкалы]]. Имеется [[Критерий_Уилкоксона_для_связных_выборок|аналог]] критерия Уилкоксона для связанных повторных наблюдений. Критерий является [[Ранговый критерий|ранговым]], поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
-
'''Пример 1.'''
+
== Пример задачи ==
-
'''Пример 2.'''
+
Задача — сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является [[Теория измерений|порядковой]]).
== Описание критерия ==
== Описание критерия ==
-
Заданы две выборки <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>.
+
Заданы две выборки <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R};\; m \le n,</tex> в противном случае следует поменять выборки местами.
-
'''Дополнительные предположения:'''
+
'''Дополнительные предположения:''' обе выборки [[простая выборка|простые]], объединённая выборка [[независимая выборка|независима]];
-
* обе выборки [[простая выборка|простые]], объединённая выборка [[независимая выборка|независима]];
+
-
* выборки взяты из неизвестных непрерывных распределений <tex>F(x)</tex> и <tex>G(y)</tex> соответственно.
+
-
'''[[Нулевая гипотеза]]''' <tex>H_0:\; </tex>.
+
'''[[Нулевая гипотеза]]''' <tex>H_0:\; \mathbb{P} \{ x\ <\ y \} = 1/2. </tex>
-
'''Статистика критерия:'''
+
'''Вычисление статистики критерия:'''
 +
# Построить общий вариационный ряд объединённой выборки <tex>x^{(1)} \leq \cdots \leq x^{(m+n)}</tex> и найти ранги <tex>r(x_i),\; r(y_i)</tex> всех элементов обеих выборок в общем вариационном ряду.
 +
# Рассчитать суммы рангов, соответствующих обеим выборкам:
 +
#:<tex>R_x = \sum_{i=1}^m r(x_i);</tex>
 +
#:<tex>R_y = \sum_{i=1}^n r(y_i);</tex>
 +
# Если размеры выборок совпадают (<tex>m=n</tex>), то значение статистики <tex>W</tex> будет равняется одной из сумм рангов <tex>R_x</tex> или <tex>R_y</tex> (любой). Если же выборки не равны, то <tex>W = R_x</tex>, то есть сумме рангов, соответствующей меньшей выборке. Заметим, что статистика <tex>W</tex> линейно связана со статистикой [[Критерий Уилкоксона-Манна-Уитни|U-критерия Манна-Уитни]].
-
== Свойства и границы применимости критерия ==
+
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
-
== История ==
+
Против альтернативы <tex>H_1:\; \mathbb{P} \{ x\ <\ y \} \neq 1/2</tex>:
 +
 
 +
:если <tex>W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right]</tex> , то нулевая гипотеза отвергается. Здесь <tex>W_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] табличного распределения Уилкоксона с параметрами <tex>m,\,n</tex>. <ref>Кобзарь А. И. Прикладная математическая статистика. — 457 c.</ref><ref>Лапач С. Н. Статистика в науке и бизнесе. — 150 с.</ref>
 +
 
 +
'''Асимптотический критерий:'''
 +
 
 +
[[Изображение:Standard_Normal_Density_-_Double-sided_Critical_Area.png|thumb|Критическая область двухвыборочного критерия Уилкоксона (нормальная аппроксимация).]]
 +
 
 +
Рассмотрим нормированную и центрированную статистика Уилкоксона:
 +
 
 +
:<tex>\tilde W = \frac{W - \frac{m(m + n + 1)}{2}}{sqrt{\frac{mn(m + n + 1)}{12}}}</tex>;
 +
 
 +
<tex>\tilde W</tex> асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы <tex>H_1</tex>) отвергается, если <tex> |\tilde W|\ >\ \Phi_{1-\alpha/2} </tex>, где <tex>\Phi_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] стандартного нормального распределения.
 +
 
 +
Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до <tex>m = n = 8</tex>.<ref>Лапач С. Н. Статистика в науке и бизнесе. — 161 с.</ref>
 +
 
 +
'''Случай совпадающих наблюдений:'''
 +
 
 +
При наличии [[Вариационный ряд|связок]] необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:
 +
 
 +
:<tex>\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2}.</tex><ref>Кобзарь А. И. Прикладная математическая статистика. — 454 c.</ref><ref>Лагутин М. Б. Наглядная математическая статистика. — 206 с.</ref>
 +
 
 +
:Здесь <tex>k</tex> - количество только тех связок, в которые входят ранги как одной, так и другой выборок, <tex>t_1, \ldots, t_k</tex> - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину <tex>\tilde W</tex> не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1. Для элементов связок вычисляется [[Вариационный ряд|средний ранг]].
 +
 
 +
'''Поправка:'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 205-206 с.</ref>
 +
 
 +
В 1976 году Р. Иман предложил следующую аппроксимацию, обеспечивающую значительное снижение относительной ошибки для критических значений, в том числе на малых выборках. Поправка использует полусумму нормальной и стьюдентовской квантилей. Положим <tex>N = n + m</tex>. Тогда:
 +
 
 +
:<tex>\tilde W^{*} = \frac12 \tilde W \left[ 1 + \sqrt{\frac{N-2}{N - 1 - (\tilde W)^2}} \right]</tex>.
 +
 
 +
Гипотеза <tex>H_0</tex> отвергается, если <tex>\tilde W ^{*} \ge (x_{1-\alpha}+y_{1-\alpha})/2</tex>, где <tex>x_{1-\alpha},\; y_{1-\alpha}</tex> обозначают соответственно квантили уровня <tex>1-\alpha</tex> стандартного нормального распределения и [[Распределение Стьюдента|распределения Стьюдента]] с <tex>N-2</tex> степенью свободы.
 +
 
 +
== Применение критерия ==
 +
 
 +
В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок. Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда <tex>\mathbb{P} \{ x<y \} = 1/2</tex>, и средние выборок не совпадают.<ref>Орлов А. И. Эконометрика. — 79 с.</ref> При этом надо заметить, что данный недостаток не является редкостью, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны. При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.<ref>Орлов А. И. Эконометрика. — 83 с.</ref>
 +
 
 +
Критерий является аналогом критерия [[Критерий Стьюдента|t-критерия Стьюдента для независимых выборок]] в случае закона распределения, отличного от нормального, либо данных, измеренных с использованием порядковой шкалы. Для нормально распределённых совокупностей следует использовать более мощный t-критерий.
 +
 
 +
== Критерий Уилкоксона и [[Критерий Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]] ==
 +
 
 +
Статистики критериев Уилкоксона и Уилкоксона-Манна-Уитни линейно связаны, поэтому, по сути, нет смысла говорить о двух различных критериях.<ref>Орлов А. И. Эконометрика. — 75 c.</ref> Оба они проверяют одну и ту же гипотезу и их границы применимости также совпадают. В то же время в литературе можно встретить рекомендации использовать критерий Уилкоксона для проверки равенства средних, когда нет предположений о дисперсиях,<ref>Лапач С. Н. Статистика в науке и бизнесе. — 160 с.</ref>, а в случае равных дисперсий применять [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]].<ref>Лапач С. Н. Статистика в науке и бизнесе. — 118 с.</ref>
 +
 
 +
Проведём эксперимент: будем строить график [[Достигаемый уровень значимости|достигаемого уровня значимости]] как функцию размера выборок и параметров распределения. Будем усреднять p-value по нескольким десяткам экспериментов.
 +
 
 +
Общие параметры для всех экспериментов:
 +
* Выборки генерируются независимо из нормального распределения с заданными параметрами.
 +
* Размер выборок варьируется от 50 до 500 с шагом 50.
 +
* Значение p-value усредняется по 50 экспериментам.
 +
* Размер выборки откладывается по вертикальной оси, переменный параметр по горизонтальной.
 +
 
 +
 
 +
{| class="standard"
 +
!Тип критерия
 +
!Параметры эксперимента
 +
!График
 +
|-
 +
|align="center"|[[Критерий Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]]
 +
|Среднее первой выборки: 0.
 +
 
 +
Среднее второй выборки: -3:0.3:3.<ref>Запись вида <tex>\alpha\;:\;\delta\;:\;\beta</tex> на языке [[Matlab]] обозначает выборку, составленную из чисел от <tex>\alpha</tex> до <tex>\beta</tex> c шагом <tex>\delta</tex>.</ref>
 +
 
 +
Дисперсия первой выборки: 5.
 +
 
 +
Дисперсия второй выборки: 5.
 +
 
 +
|[[Изображение:UNorm_50-50-1000_0_-3-0.3-3_5_5_50.png|400px]]
 +
|-
 +
|align="center"|Критерий Уилкоксона
 +
|Среднее первой выборки: 0.
 +
 
 +
Среднее второй выборки: -3:0.3:3.
 +
 
 +
Дисперсия первой выборки: 5.
 +
 
 +
Дисперсия второй выборки: 5.
 +
 
 +
|[[Изображение:WNorm 50-50-1000 0 -3-0.3-3 5 5 50.png|400px]]
 +
|-
 +
|align="center"|[[Критерий Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]]
 +
|Среднее первой выборки: 0.
 +
 
 +
Среднее второй выборки: -30:3:30.
 +
 
 +
Дисперсия первой выборки: 1.
 +
 
 +
Дисперсия второй выборки: 50.
 +
 
 +
|[[Изображение:UNorm 50-50-1000 0 -30-3-30 1 50 50.png|400px]]
 +
|-
 +
 
 +
|align="center"|Критерий Уилкоксона
 +
|Среднее первой выборки: 0.
 +
 
 +
Среднее второй выборки: -30:3:30.
 +
 
 +
Дисперсия первой выборки: 1.
 +
 
 +
Дисперсия второй выборки: 50.
 +
 
 +
|[[Изображение:WNorm 50-50-1000 0 -30-3-30 1 50 50.png|400px]]
 +
|}
 +
 
 +
Легко видеть, что при одинаковых параметрах экспериментов графики p-value критериев Уилкоксона и Уилкоксона-Манна-Уитни практически совпадают, в том числе и в случае, когда дисперсии выборок существенно различаются.
 +
 
 +
== Примечания ==
 +
<references/>
== Литература ==
== Литература ==
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
-
 
+
# ''Лапач С. Н. , Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
 +
# ''Орлов А. И.'' Эконометрика. — М.: Экзамен, 2003. — §4.5.
 +
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — 454-456 с.
== Ссылки ==
== Ссылки ==
-
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
+
* [[Критерий Уилкоксона-Манна-Уитни]] — аналогичный критерий.
-
* [[Статистика (функция выборки)]]
+
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
 +
* [[Критерий Уилкоксона для связных выборок]] — аналог критерия для случая парных повторных наблюдений.
-
[[Категория:Статистические тесты]]
 
[[Категория:Непараметрические статистические тесты]]
[[Категория:Непараметрические статистические тесты]]
-
 
+
[[Категория:Прикладная статистика]]
-
{{Задание|Василий Ломакин|Vokov|31 декабря 2009}}
+

Текущая версия

Содержание

Критерий Уилкоксона (Вилкоксона) двухвыборочныйнепараметрический статистический критерий, используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Имеется аналог критерия Уилкоксона для связанных повторных наблюдений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Пример задачи

Задача — сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является порядковой).

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R};\; m \le n, в противном случае следует поменять выборки местами.

Дополнительные предположения: обе выборки простые, объединённая выборка независима;

Нулевая гипотеза H_0:\; \mathbb{P} \{ x\ <\ y \} = 1/2.

Вычисление статистики критерия:

  1. Построить общий вариационный ряд объединённой выборки x^{(1)} \leq \cdots \leq x^{(m+n)} и найти ранги r(x_i),\; r(y_i) всех элементов обеих выборок в общем вариационном ряду.
  2. Рассчитать суммы рангов, соответствующих обеим выборкам:
    R_x = \sum_{i=1}^m r(x_i);
    R_y = \sum_{i=1}^n r(y_i);
  3. Если размеры выборок совпадают (m=n), то значение статистики W будет равняется одной из сумм рангов R_x или R_y (любой). Если же выборки не равны, то W = R_x, то есть сумме рангов, соответствующей меньшей выборке. Заметим, что статистика W линейно связана со статистикой U-критерия Манна-Уитни.

Критерий (при уровне значимости \alpha):

Против альтернативы H_1:\; \mathbb{P} \{ x\ <\ y \} \neq 1/2:

если W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right] , то нулевая гипотеза отвергается. Здесь W_{\alpha} есть \alpha-квантиль табличного распределения Уилкоксона с параметрами m,\,n. [1][1]

Асимптотический критерий:

Критическая область двухвыборочного критерия Уилкоксона (нормальная аппроксимация).
Критическая область двухвыборочного критерия Уилкоксона (нормальная аппроксимация).

Рассмотрим нормированную и центрированную статистика Уилкоксона:

\tilde W = \frac{W - \frac{m(m + n + 1)}{2}}{sqrt{\frac{mn(m + n + 1)}{12}}};

\tilde W асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы H_1) отвергается, если  |\tilde W|\ >\ \Phi_{1-\alpha/2} , где \Phi_{\alpha} есть \alpha-квантиль стандартного нормального распределения.

Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до m = n = 8.[1]

Случай совпадающих наблюдений:

При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:

\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2}.[1][1]
Здесь k - количество только тех связок, в которые входят ранги как одной, так и другой выборок, t_1, \ldots, t_k - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину \tilde W не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1. Для элементов связок вычисляется средний ранг.

Поправка:[1]

В 1976 году Р. Иман предложил следующую аппроксимацию, обеспечивающую значительное снижение относительной ошибки для критических значений, в том числе на малых выборках. Поправка использует полусумму нормальной и стьюдентовской квантилей. Положим N = n + m. Тогда:

\tilde W^{*} = \frac12 \tilde W \left[ 1 + \sqrt{\frac{N-2}{N - 1 - (\tilde W)^2}} \right].

Гипотеза H_0 отвергается, если \tilde W ^{*} \ge (x_{1-\alpha}+y_{1-\alpha})/2, где x_{1-\alpha},\; y_{1-\alpha} обозначают соответственно квантили уровня 1-\alpha стандартного нормального распределения и распределения Стьюдента с N-2 степенью свободы.

Применение критерия

В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок. Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда \mathbb{P} \{ x<y \} = 1/2, и средние выборок не совпадают.[1] При этом надо заметить, что данный недостаток не является редкостью, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны. При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.[1]

Критерий является аналогом критерия t-критерия Стьюдента для независимых выборок в случае закона распределения, отличного от нормального, либо данных, измеренных с использованием порядковой шкалы. Для нормально распределённых совокупностей следует использовать более мощный t-критерий.

Критерий Уилкоксона и U-критерий Манна-Уитни

Статистики критериев Уилкоксона и Уилкоксона-Манна-Уитни линейно связаны, поэтому, по сути, нет смысла говорить о двух различных критериях.[1] Оба они проверяют одну и ту же гипотезу и их границы применимости также совпадают. В то же время в литературе можно встретить рекомендации использовать критерий Уилкоксона для проверки равенства средних, когда нет предположений о дисперсиях,[1], а в случае равных дисперсий применять U-критерий Манна-Уитни.[1]

Проведём эксперимент: будем строить график достигаемого уровня значимости как функцию размера выборок и параметров распределения. Будем усреднять p-value по нескольким десяткам экспериментов.

Общие параметры для всех экспериментов:

  • Выборки генерируются независимо из нормального распределения с заданными параметрами.
  • Размер выборок варьируется от 50 до 500 с шагом 50.
  • Значение p-value усредняется по 50 экспериментам.
  • Размер выборки откладывается по вертикальной оси, переменный параметр по горизонтальной.


Тип критерия Параметры эксперимента График
U-критерий Манна-Уитни Среднее первой выборки: 0.

Среднее второй выборки: -3:0.3:3.[1]

Дисперсия первой выборки: 5.

Дисперсия второй выборки: 5.

Критерий Уилкоксона Среднее первой выборки: 0.

Среднее второй выборки: -3:0.3:3.

Дисперсия первой выборки: 5.

Дисперсия второй выборки: 5.

U-критерий Манна-Уитни Среднее первой выборки: 0.

Среднее второй выборки: -30:3:30.

Дисперсия первой выборки: 1.

Дисперсия второй выборки: 50.

Критерий Уилкоксона Среднее первой выборки: 0.

Среднее второй выборки: -30:3:30.

Дисперсия первой выборки: 1.

Дисперсия второй выборки: 50.

Легко видеть, что при одинаковых параметрах экспериментов графики p-value критериев Уилкоксона и Уилкоксона-Манна-Уитни практически совпадают, в том числе и в случае, когда дисперсии выборок существенно различаются.

Примечания


Литература

  1. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
  2. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
  3. Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — §4.5.
  4. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 454-456 с.

Ссылки

Личные инструменты