Участник:Lr2k/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Нулевая гипотеза)
Строка 11: Строка 11:
'''Пример 2:''' Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной настойчивости. Каждому испытуемому индивидуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли считать, что фактор длины анаграммы влияет на длительность попыток ее решения?
'''Пример 2:''' Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной настойчивости. Каждому испытуемому индивидуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли считать, что фактор длины анаграммы влияет на длительность попыток ее решения?
-
==Метод множественных сравнений Шеффе==
+
==Критерий Краскела-Уоллиса==
-
В качестве [[Параметрические статистические тесты|параметрического теста]] для выявления наличия статистически значимых различий между средними для [[Нормальное распределение|нормально распределенных]] [[Связность|связных]] групп используется [[Метод множественных сравнений Шеффе|метод множественных сравнений Шеффе]].
+
В качестве [[Непараметрические статистические тесты|непараметрического теста]] для выявления наличия статистически значимых различий между средними нескольких выборок используется [[Критерий Краскела-Уоллиса|критерий Краскела-Уоллиса]].
-
Пусть имеется <tex>k</tex> выборок <tex>x^{n_1}_1, . . . , x^{n_k}_k</tex>, объемом <tex>n_i\; (i=1,...,k)</tex> каждая, где
+
Пусть заданы <i>k</i> выборок: <tex>x_1^{n_1}=\left\{x_{11},\dots,x_{1n_1}\right\}, \dots, x_k^{n_k}=\left\{x_{k1},\dots,x_{kn_k}\right\}</tex>.
-
<tex>x^{n_i}_i=(x_{i,1},\ldots,x_{i,n_i}),\; x_{i,j}\in\mathbb{R}</tex>
+
Объединённая выборка: <tex>x=x_1^{n_1}\cup x_2^{n_2}\cup \dots \cup x_k^{n_k}</tex>.
-
=== Дополнительное предположение ===
+
=== Дополнительные предположения ===
-
Распределения выборок нормальны, выборки [[Связность|связные]].
+
* обе выборки [[Простая выборка|простые]], объединённая выборка [[Независимая выборка|независима]];
 +
* выборки взяты из неизвестных непрерывных распределений <tex>F_1(x),\dots,F_k(x)</tex>.
=== Нулевая гипотеза ===
=== Нулевая гипотеза ===
-
Критерий Шеффе проверяет [[Нулевая гипотеза|нулевую гипотезу]] <tex>H_0:\; \sum_{i=1}^{k}c_i\overline{X}_i=0</tex>,
 
-
<br/ >где <tex>\sum_{i=1}^{k}c_i=0</tex>, <tex>\overline{X}_i</tex> — среднее арифметическое значение в группе с номером <tex>i</tex>.
 
-
<tex>c_i,\; i=1,...,k</tex> — параметры критерия.
+
<tex>H_0:\; F_1(x)=\dots=F_k(x)</tex> при альтернативе <tex>H_1:\; F_1(x)=F_2(x-\Delta_1)=\dots=F_k(x-\Delta_{k-1})</tex>.
==Литература==
==Литература==
Строка 37: Строка 36:
* [http://www.tspu.tula.ru/res/math/mop/lections/lection_7.htm#_Toc73845987 Дисперсионный анализ для связанных выборок] - Аналитическая статистика.
* [http://www.tspu.tula.ru/res/math/mop/lections/lection_7.htm#_Toc73845987 Дисперсионный анализ для связанных выборок] - Аналитическая статистика.
-
* [http://lib.socio.msu.ru/l/library?e=d-000-00---001ucheb--00-0-0-0prompt-10---4------0-1l--1-ru-50---20-about---00031-001-1-0windowsZz-1251-00&a=d&cl=CL1&d=HASHe10c3b36c7d751dd18704b.11 Многофакторный дисперсионный анализ] - Электронная библиотека.
+
* [http://khomich.narod.ru/metodichka/Dispersionniy/Dispersionniy.htm Дисперсионный анализ].
 +
* [http://www.ievbran.ru/Kiril/Library/Book1/content352/content352.htm Однофакторный дисперсионный анализ].
==См. также==
==См. также==
* [[Однофакторная параметрическая модель]]
* [[Однофакторная параметрическая модель]]
-
* [[Однофакторная непараметрическая модель]]
+
* [[Двухфакторная непараметрическая модель]]
* [[Дисперсионный анализ]]
* [[Дисперсионный анализ]]

Версия 08:28, 30 декабря 2009

Содержание

Однофакторная модель в рамках дисперсионного анализа используется для исследования влияния одной переменной (фактора) на одну зависимую количественную переменную (отклик).

Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза H_0 говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности.

Примеры задач

Пример 1: Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью — 1 слово в 5 секунд, второй группе со средней скоростью — 1 слово в 2 секунды, и третьей группе с большой скоростью — 1 слово в секунду. Необходимо определить, будут ли показатели воспроизведения зависеть от скорости предъявления слов.

Пример 2: Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной настойчивости. Каждому испытуемому индивидуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли считать, что фактор длины анаграммы влияет на длительность попыток ее решения?

Критерий Краскела-Уоллиса

В качестве непараметрического теста для выявления наличия статистически значимых различий между средними нескольких выборок используется критерий Краскела-Уоллиса.

Пусть заданы k выборок: x_1^{n_1}=\left\{x_{11},\dots,x_{1n_1}\right\}, \dots, x_k^{n_k}=\left\{x_{k1},\dots,x_{kn_k}\right\}. Объединённая выборка: x=x_1^{n_1}\cup x_2^{n_2}\cup \dots \cup x_k^{n_k}.

Дополнительные предположения

  • обе выборки простые, объединённая выборка независима;
  • выборки взяты из неизвестных непрерывных распределений F_1(x),\dots,F_k(x).

Нулевая гипотеза

H_0:\; F_1(x)=\dots=F_k(x) при альтернативе H_1:\; F_1(x)=F_2(x-\Delta_1)=\dots=F_k(x-\Delta_{k-1}).

Литература

  1. Шеффе Г. Дисперсионный анализ. — М., 1980.
  2. Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
  3. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
  4. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
  5. Холлендер М., Вульф Д.А. Непараметрические методы статистики.

Ссылки

См. также


Данная статья является непроверенным учебным заданием.
Студент: Участник:Lr2k
Преподаватель: Участник:Vokov
Срок: 31 декабря 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты