Математические основы теории прогнозирования (курс лекций)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(+ конспект лекции по уменьшению размерности)
(+ ссылка на статью по методу главных компонент)
Строка 52: Строка 52:
[[Media:MOTP11_4.pdf|Презентация (PDF, 723 Кб)]]
[[Media:MOTP11_4.pdf|Презентация (PDF, 723 Кб)]]
-
==== Уменьшение размерности описания данных. Метод главных компонент ====
+
==== Уменьшение размерности описания данных. [[Метод главных компонент]] ====
Проблема анализа многомерных данных. Метод главных компонент. Выбор размерности редуцированного пространства. Эффективные формулы метода главных компонент для случая, когда число объектов меньше числа признаков. Ядровая версия метода главных компонент.
Проблема анализа многомерных данных. Метод главных компонент. Выбор размерности редуцированного пространства. Эффективные формулы метода главных компонент для случая, когда число объектов меньше числа признаков. Ядровая версия метода главных компонент.

Версия 13:26, 18 марта 2011

Студентам на заметку: на вкладке «Обсуждение» к этой странице можно задать вопрос по курсу, высказать свои пожелания, предложения, а также вести обсуждение между собой. — Д.А. Кропотов 18:56, 11 февраля 2011 (MSK)



Курс посвящен основным математическим методам решения задач машинного обучения (распознавания, классификации, прогнозирования, анализа данных). Эти методы широко используются при решении задач из разных прикладных областей (экономика, финансы, медицина, бизнес, геология, химия и др.), например, прогноз результатов лечения, предсказание свойств химических соединений, распознавание речи, анализ поведения, диагностика состояния оборудования, прогноз урожайности и т.д. Задачей курса также является ознакомление с основными математическими теориями, которые используются при построении алгоритмов распознавания, такими как алгебра, математическая статистика, методы оптимизации, дискретная математика и др.

Контрольная работа

Для получения допуска к экзамену необходимо успешно написать контрольную работу, которую планируется провести после окончания чтения первой части курса (шестая лекция, 22 марта). Оценка за контрольную работу будет учитываться на экзамене. Студентам, которые по уважительной причине не могут присутствовать на контрольной 22 марта, просьба заранее оповестить об этом преподавателей.

Примерный вариант задания на контрольной (PDF)

Правила проведения контрольной работы:

  • Разрешается пользоваться любыми печатными материалами
  • Запрещается использовать любые электронные устройства, студенты-нарушители будут отправляться на пересдачу
  • Выход из аудитории во время написания контрольной запрещен
  • Будет предусмотрена возможность одной пересдачи

Программа курса

ЧАСТЬ 1 (лектор Д.П. Ветров)

Различные постановки задач машинного обучения

Обзор задач анализа данных: классификация, регрессия, кластеризация, идентификация, прогнозирование. Примеры. Историческая справка. Основные проблемы теории распознавания образов: переобучение, противоречивость информации, малый объем выборки. Иллюстративные примеры переобучения, связь переобучения и объема выборки.

Ликбез: основные понятия теории вероятностей (математическое ожидание, дисперсия, ковариационная матрица, плотность вероятности, функция правдоподобия)

Презентация (PDF, 229 КБ)

Методы линейной и логистической регрессии. Регуляризация обучения.

Метод максимального правдоподобия. Формальные обозначения, генеральная совокупность, критерии качества обучения как точности на генеральной совокупности. Вывод выражения для идеальных решающих правил. Способы введения функции правдоподобия для задачи регрессии и классификации. Выражение для коэффициентов линейной регрессии, хэт-матрица. Метод наименьших квадратов с итеративно-перевзвешивающимися весами. Необходимость ридж-оценивания для устранения вырожденности гессиана.

Ликбез: нормальное распределение, псевдообращение матриц и нормальное псевдорешение.

Презентация (PDF, 593 КБ)

Метод опорных векторов

Линейный классификатор, максимизирующий зазор между классами. Обучение классификатора как задача квадратичного программирования. Получение двойственной задачи для задачи квадратичного программирования. Ядровой переход. Опорные объекты. Настройка параметров метода.

Ликбез: решение задач условной оптимизации, правило множителей Лагранжа, переход к двойственной задаче

Презентация (PDF, 393 Кб)

Скрытые марковские модели (СММ). Алгоритм сегментации сигнала.

Примеры задач сегментации сигналов. Обучение СММ с учителем. Поиск наиболее вероятной последовательности состояний. ЕМ-алгоритм и его использование для решения задачи кластеризации.

Ликбез: динамическое программирование

Презентация (PDF, 723 Кб)

Уменьшение размерности описания данных. Метод главных компонент

Проблема анализа многомерных данных. Метод главных компонент. Выбор размерности редуцированного пространства. Эффективные формулы метода главных компонент для случая, когда число объектов меньше числа признаков. Ядровая версия метода главных компонент.

Конспект лекции (PDF, 881Кб)

ЧАСТЬ 2 (лектор Ю.И. Журавлев)

Стандартная задача распознавания. Алгоритм «Кора».

Тестовый алгоритм. Система уравнений, определяющих тупиковые тесты. Таблица обучения с двумя классами объектов. Основные упрощающие формулы при умножении левых частей тестовых уравнений.

Обоснование способа построения всех тупиковых тестов через приведение системы тестовых уравнений к неупрощаемой ДНФ.

Алгоритм вычисления оценок (АВО). Шаги определения, полный перечень параметров. Итоговая формула для числа голосов.

Эффективные формулы вычисления оценок в АВО.

Представление алгоритма как композиции распознающего оператора и фиксированного решающего правила. Алгебры над алгоритмами. Отмеченные точки в контрольной матрице. Построение корректного алгоритма, если найдена совокупность операторов, отмечающих все единичные точки информационных векторов контрольной матрицы.

Конспекты лекций 2008 года (PDF, 402Кб)

Литература

  1. Журавлёв Ю.И. Избранные научные труды. – М.: «Магистр», 1998.– 420с.
  2. Журавлев Ю.И., Рязанов В.В., Сенько О.В. Распознавание. Математические методы. Программная система. Практические применения, М.: Фазис, 2006. (ISBN 5-7036-0108-8)
  3. Дьяконов А.Г. Алгебра над алгоритмами вычисления оценок: Учебное пособие. – М.: Издательский отдел ф-та ВМиК МГУ им. М.В. Ломоносова, 2006. – 72с. (ISBN 5-89407-252-2)
  4. Ветров Д.П., Кропотов Д.А. Байесовские методы машинного обучения, учебное пособие по спецкурсу, 2007 (Часть 1, PDF 1.22МБ; Часть 2, PDF 1.58МБ)
  5. Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006.

Ссылки

Машинное обучение (курс лекций, К.В. Воронцов)

Алгоритмы, модели, алгебры (курс лекций, Ю.И. Журавлев, А.Г. Дьяконов)

Байесовские методы машинного обучения (спецкурс, Д.П. Ветров, Д.А. Кропотов, А.А. Осокин)

Структурные методы анализа изображений и сигналов (спецкурс, Д.П. Ветров, Д.А. Кропотов, А.А. Осокин)

Форум студентов ВМиК с обсуждением курса

Информация о курсе на викиресурсе Esyr

Математические методы прогнозирования (кафедра ВМиК МГУ)

Личные инструменты