Математические методы прогнозирования (кафедра ВМиК МГУ)
Материал из MachineLearning.
(→Подстраницы) |
(email кафедры в виде картинки, убраны все старые данные по месту и времени проведения спецкурсов/спецсеминаров) |
||
Строка 12: | Строка 12: | ||
|Телефон: +7-495-939-4202 | |Телефон: +7-495-939-4202 | ||
|- | |- | ||
- | |e-mail: | + | |e-mail: [[Изображение:MMP_email.jpg]] |
|- | |- | ||
|Ученый секретарь кафедры: [[Участник:Dmitry Vetrov|Д.П. Ветров]] | |Ученый секретарь кафедры: [[Участник:Dmitry Vetrov|Д.П. Ветров]] | ||
Строка 42: | Строка 42: | ||
*: В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями. | *: В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями. | ||
- | * '''[[СМАИС|Структурные методы анализа изображений и сигналов]]''', [[Участник:Dmitry Vetrov|Д.П.Ветров]], | + | * '''[[СМАИС|Структурные методы анализа изображений и сигналов]]''', [[Участник:Dmitry Vetrov|Д.П.Ветров]], читается в весеннем семестре. |
*: В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями. | *: В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями. | ||
- | * '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]]''', [[Участник:Vokov|К.В.Воронцов]] | + | * '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]]''', [[Участник:Vokov|К.В.Воронцов]]. |
*: Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения. | *: Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения. | ||
- | * '''Исчисления высказываний классической логики''', С.И.Гуров | + | * '''Исчисления высказываний классической логики''', С.И.Гуров. |
*: Во второй части спецкурса рассматриваются некоторые гильбертовы исчисления H. Основное внимание уделяется генценовским непропозициональным исчислениям высказываний: натурального вывода N и секвенций S. Спецкурс поддерживается практическими занятиями. | *: Во второй части спецкурса рассматриваются некоторые гильбертовы исчисления H. Основное внимание уделяется генценовским непропозициональным исчислениям высказываний: натурального вывода N и секвенций S. Спецкурс поддерживается практическими занятиями. | ||
- | * '''[[Булевы уравнения и проблема SAT]]''', С.И.Гуров, [[Участник:Dj|А.Г. Дьяконов]] | + | * '''[[Булевы уравнения и проблема SAT]]''', С.И.Гуров, [[Участник:Dj|А.Г. Дьяконов]]. |
- | * '''Извлечение информации из изображений''', И.Б.Гуревич | + | * '''Извлечение информации из изображений''', И.Б.Гуревич. |
- | * '''Основы обобщенного спектрально-аналитического метода и его приложения''', Ф.Ф.Дедус | + | * '''Основы обобщенного спектрально-аналитического метода и его приложения''', Ф.Ф.Дедус, раз в две недели по 4 академических часа. |
*: Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье). | *: Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье). | ||
- | * '''Логический анализ данных в распознавании''', [[Участник:Djukova|Е.В.Дюкова]] | + | * '''Логический анализ данных в распознавании''', [[Участник:Djukova|Е.В.Дюкова]]. |
*: Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач. | *: Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач. | ||
- | * '''Метрические методы интеллектуального анализа данных''', А.И.Майсурадзе | + | * '''Метрические методы интеллектуального анализа данных''', А.И.Майсурадзе. |
- | * '''Вычислительные задачи математической биологии''', А.Н.Панкратов | + | * '''Вычислительные задачи математической биологии''', А.Н.Панкратов, раз в две недели по 4 академических часа. |
*: В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул. | *: В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул. | ||
- | * '''[[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|Нестатистические методы анализа данных и классификации]]''', [[Участник:Rvv|В.В.Рязанов]] | + | * '''[[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|Нестатистические методы анализа данных и классификации]]''', [[Участник:Rvv|В.В.Рязанов]]. |
*: В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике. | *: В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике. | ||
- | * '''[[Задачи распознавания в биоинформатике (ВМК МГУ, К. В. Рудаков, И. Ю.Торшин)|Задачи распознавания в биоинформатике]]''' Рудаков К.В., [[Участник:Tiy|Торшин И.Ю.]] | + | * '''[[Задачи распознавания в биоинформатике (ВМК МГУ, К. В. Рудаков, И. Ю.Торшин)|Задачи распознавания в биоинформатике]]''' Рудаков К.В., [[Участник:Tiy|Торшин И.Ю.]]) |
*: Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач. | *: Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач. | ||
== Спецсеминары == | == Спецсеминары == | ||
- | * '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования]]''', доц., к.ф.-м.н. [[Участник:Vokov|К.В.Воронцов]] | + | * '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования]]''', доц., к.ф.-м.н. [[Участник:Vokov|К.В.Воронцов]]. |
- | * '''[[Спецсеминар "Байесовские методы машинного обучения"|Байесовские методы машинного обучения]]''', н.с., к.ф.-м.н. [[Участник:Dmitry Vetrov|Д.П.Ветров]] | + | * '''[[Спецсеминар "Байесовские методы машинного обучения"|Байесовские методы машинного обучения]]''', н.с., к.ф.-м.н. [[Участник:Dmitry Vetrov|Д.П.Ветров]]. |
* '''[[Анализ и оценивание информации представленной в виде изображений]]''', доц., к.ф.-м.н. И.Б.Гуревич. | * '''[[Анализ и оценивание информации представленной в виде изображений]]''', доц., к.ф.-м.н. И.Б.Гуревич. | ||
- | * '''[[Спецсеминар "Новые методы в распознавании образов и прогнозировании"|Новые методы в распознавании образов и прогнозировании]]''', доц., к.ф.-м.н. С.И.Гуров | + | * '''[[Спецсеминар "Новые методы в распознавании образов и прогнозировании"|Новые методы в распознавании образов и прогнозировании]]''', доц., к.ф.-м.н. С.И.Гуров. |
* '''[[Спектральные методы в задачах математической биологии]]''', проф., д.т.н. Ф.Ф.Дедус. | * '''[[Спектральные методы в задачах математической биологии]]''', проф., д.т.н. Ф.Ф.Дедус. | ||
Строка 92: | Строка 92: | ||
* '''[[Комбинаторные основы теории информации]]''', проф., д.ф.-м.н. В.К.Леонтьев. | * '''[[Комбинаторные основы теории информации]]''', проф., д.ф.-м.н. В.К.Леонтьев. | ||
- | * '''[[Анализ данных в метрических пространствах]]''', доц., к.ф.-м.н. [[Участник:AIM|А.И.Майсурадзе]] | + | * '''[[Анализ данных в метрических пространствах]]''', доц., к.ф.-м.н. [[Участник:AIM|А.И.Майсурадзе]]. |
* '''[[Вычислительные задачи математической биологии и биофизики]]''', доц., к.ф.-м.н. С.А.Махортых, доц., к.ф.-м.н. А.Н.Панкратов. | * '''[[Вычислительные задачи математической биологии и биофизики]]''', доц., к.ф.-м.н. С.А.Махортых, доц., к.ф.-м.н. А.Н.Панкратов. | ||
Строка 98: | Строка 98: | ||
* '''[[Дискретно-непрерывные преобразования изображений в задачах распознавания]]''', проф., д.т.н. [[Участник:Mest|Л.М.Местецкий]]. | * '''[[Дискретно-непрерывные преобразования изображений в задачах распознавания]]''', проф., д.т.н. [[Участник:Mest|Л.М.Местецкий]]. | ||
- | * '''[[Спецсеминар "Прикладные методы прогнозирования и анализа данных"|Прикладные методы прогнозирования и анализа данных]]''', доц., д.ф.-м.н. [[Участник:Rvv|В.В.Рязанов]] | + | * '''[[Спецсеминар "Прикладные методы прогнозирования и анализа данных"|Прикладные методы прогнозирования и анализа данных]]''', доц., д.ф.-м.н. [[Участник:Rvv|В.В.Рязанов]]. |
* '''[[Проблемно-ориентированные схемы распознавания]]''', чл.-корр. РАН, проф. [[Рудаков, Константин Владимирович|Рудаков Константин Владимирович]], доц., к.ф.-м.н. [[Участник:Yury Chekhovich|Ю.В.Чехович]]. | * '''[[Проблемно-ориентированные схемы распознавания]]''', чл.-корр. РАН, проф. [[Рудаков, Константин Владимирович|Рудаков Константин Владимирович]], доц., к.ф.-м.н. [[Участник:Yury Chekhovich|Ю.В.Чехович]]. |
Версия 18:43, 3 августа 2011
Заведующий кафедрой — лауреат Ленинской премии, академик РАН, д.ф.-м.н., профессор Юрий Иванович Журавлёв
|
Кафедра была создана в 1997 году. Кафедра готовит специалистов по анализу данных, распознаванию и прогнозированию в технике, экономике, социологии, биологии и т. п. с использованием современных математических методов, программных и компьютерных систем. В процессе обучения студенты получают фундаментальное образование в таких областях математики, как современная алгебра, математическая логика, дискретная и комбинаторная математика, математическое моделирование, диагностика сложных систем, интеллектуальный анализ данных, машинное обучение, прогнозирование, прикладная статистика, математические модели искусственного интеллекта, распознавание образов, обработка и анализ изображений. В рамках специального практикума студенты получают навыки работы с современными базами данных и знаний, овладевают современными языками и методами программирования, приобретают опыт решения прикладных задач. Кафедра готовит научных работников, преподавателей колледжей и высшей школы, специалистов по разработке и применению математических методов для решения таких задач, как, например, прогнозирование месторождений полезных ископаемых, землетрясений, свойств химических соединений, техногенных и социальных катастроф и кризисов, развития экономических и политических ситуаций, и т. п.
В 2001 году был создан филиал кафедры на базе Института математических проблем биологии РАН в г. Пущино, в котором студенты старших курсов участвуют в решении фундаментальных и прикладных проблем в области биоинформатики.
Производственную практику студенты проходят в научно-исследовательских институтах РАН, участвуя, в том числе, в работах по грантам РФФИ, и компаниях, специализирующихся в анализе данных и машинном обучении (например, в компании Форексис). Многие студенты, имеющие склонность к научной деятельности, получают первые самостоятельные результаты уже к четвертому-пятому году обучения, публикуются в научных журналах и после получения диплома продолжают обучение в аспирантуре кафедры.
Координаты для связи:
Телефон: +7-495-939-4202 |
e-mail: |
Ученый секретарь кафедры: Д.П. Ветров |
Доска объявлений
{{#if: | |
- 24.09.2024 года: Начинается чтение спецкурса Логический анализ данных в распознавании, (Logical data analysis in recognition) Читают д.ф.-м.н. Е.В. Дюкова и к. ф.-м.н. П.А. Прокофьев. Первое занятие состоится 14 октября 2024 г. в 17.15 в ауд. 653..
В спецкурсе будут изложены общие принципы, лежащие в основе дискретных методов анализа информации в задачах распознавания, классификации и прогнозирования. Будут рассмотрены подходы к конструированию процедур классификации по прецедентам на основе использования аппарата логических функций и методов построения покрытий булевых и целочисленных матриц. Будут изучены основные модели логических процедур классификации и рассмотрены вопросы, связанные с исследованием сложности их реализации и качества решения прикладных задач.
Спецкурс для бакалавров 2-4 курсов. По спецкурсу издано учебное пособие. Презентации лекций выставлены на сайте кафедры ММП. Записаться на спецкурс и задать вопрос можно, послав письмо на адрес: edjukova@mail.ru или p_prok@mail.ru.
Кафедральные курсы
Третий курс
- Математические методы распознавания образов, К.В.Воронцов
- Изучаются методы классификации, регрессии, понижения размерности, кластеризации, как классические, так и новые, созданные за последние 10–15 лет. На материал данного курса опираются последующие кафедральные курсы.
Четвёртый курс
Пятый курс
- Прикладной статистический анализ данных, К.В.Воронцов
- Обзорный курс, охватывающий дисперсионный, корреляционный, регрессионный анализ, анализ временных рядов и прогнозирование, анализ выживаемости, анализ панельных данных, выборочный анализ. Цели курса — связать математическую статистику с практическими приложениями в различных предметных областях, научить студентов правильно применять методы прикладной статистики.
Спецкурсы
- Байесовские методы машинного обучения, Д.П.Ветров, читается в осеннем семестре.
- В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
- Структурные методы анализа изображений и сигналов, Д.П.Ветров, читается в весеннем семестре.
- В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
- Теория надёжности обучения по прецедентам, К.В.Воронцов.
- Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
- Исчисления высказываний классической логики, С.И.Гуров.
- Во второй части спецкурса рассматриваются некоторые гильбертовы исчисления H. Основное внимание уделяется генценовским непропозициональным исчислениям высказываний: натурального вывода N и секвенций S. Спецкурс поддерживается практическими занятиями.
- Булевы уравнения и проблема SAT, С.И.Гуров, А.Г. Дьяконов.
- Извлечение информации из изображений, И.Б.Гуревич.
- Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф.Дедус, раз в две недели по 4 академических часа.
- Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
- Логический анализ данных в распознавании, Е.В.Дюкова.
- Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
- Метрические методы интеллектуального анализа данных, А.И.Майсурадзе.
- Вычислительные задачи математической биологии, А.Н.Панкратов, раз в две недели по 4 академических часа.
- В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
- Нестатистические методы анализа данных и классификации, В.В.Рязанов.
- В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
- Задачи распознавания в биоинформатике Рудаков К.В., Торшин И.Ю.)
- Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
Спецсеминары
- Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования, доц., к.ф.-м.н. К.В.Воронцов.
- Байесовские методы машинного обучения, н.с., к.ф.-м.н. Д.П.Ветров.
- Анализ и оценивание информации представленной в виде изображений, доц., к.ф.-м.н. И.Б.Гуревич.
- Новые методы в распознавании образов и прогнозировании, доц., к.ф.-м.н. С.И.Гуров.
- Спектральные методы в задачах математической биологии, проф., д.т.н. Ф.Ф.Дедус.
- Логические модели распознавания, доц., д.ф.-м.н. Е.В.Дюкова.
- Алгебрологические методы в задачах классификации и прогнозирования, академик РАН, д.ф.-м.н., профессор Ю.И.Журавлёв.
- Комбинаторные основы теории информации, проф., д.ф.-м.н. В.К.Леонтьев.
- Анализ данных в метрических пространствах, доц., к.ф.-м.н. А.И.Майсурадзе.
- Вычислительные задачи математической биологии и биофизики, доц., к.ф.-м.н. С.А.Махортых, доц., к.ф.-м.н. А.Н.Панкратов.
- Дискретно-непрерывные преобразования изображений в задачах распознавания, проф., д.т.н. Л.М.Местецкий.
- Прикладные методы прогнозирования и анализа данных, доц., д.ф.-м.н. В.В.Рязанов.
- Проблемно-ориентированные схемы распознавания, чл.-корр. РАН, проф. Рудаков Константин Владимирович, доц., к.ф.-м.н. Ю.В.Чехович.
Преподаватели
- Ветров Дмитрий Петрович, к.ф.-м.н.
- Воронцов Константин Вячеславович, к.ф.-м.н.
- Гуревич Игорь Борисович, к.ф.-м.н.
- Гуров Сергей Исаевич, к.ф.-м.н.
- Дедус Флоренц Фёдорович, д.т.н., профессор
- Дьяконов Александр Геннадьевич, д.ф.-м.н.
- Дюкова Елена Всеволодовна, д.ф.-м.н.
- Журавлёв Юрий Иванович, академик РАН, заведующий кафедрой
- Леонтьев Владимир Константинович, д.ф.-м.н., профессор
- Майсурадзе Арчил Ивериевич, к.ф.-м.н.
- Махортых Сергей Александрович, к.ф.-м.н.
- Местецкий Леонид Моисеевич, д.т.н., профессор
- Панкратов Антон Николаевич, к.ф.-м.н.
- Рудаков Константин Владимирович, член-корреспондент РАН
- Рязанов Владимир Васильевич, д.ф.-м.н., академик РАЕН
- Чехович Юрий Викторович, к.ф.-м.н.
- Шурыгин Александр Михайлович, д.т.н.
Материалы для студентов
Рекомендации
- Научно-исследовательская работа.
- Написание статей, курсовых и дипломных работ.
- Подготовка презентаций.
- Защита дипломной работы.
Шаблоны
- mmp-fish-kurs — образцы оформления курсовых работ в MS Word и LaTeX. — Обновлено 14 апреля 2011 г.
Ссылки
- http://cs.msu.su — страница кафедры на сайте факультета ВМК.
- Интеллектуальные системы (кафедра МФТИ) — родственная кафедра на Физтехе.