Машинное обучение (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(дополнение, уточнение, ссылки)
м (укоротил заголовки)
Строка 50: Строка 50:
* Смесь многомерных нормальных распределений. [[Сеть радиальных базисных функций]] (RBF) и применение EM-алгоритма для её настройки.
* Смесь многомерных нормальных распределений. [[Сеть радиальных базисных функций]] (RBF) и применение EM-алгоритма для её настройки.
-
=== Линейные алгоритмы классификации, однослойный перцептрон ===
+
=== Линейные алгоритмы классификации ===
* Естественный нейрон, [[модель МакКаллока-Питтса]], функции активации.
* Естественный нейрон, [[модель МакКаллока-Питтса]], функции активации.
* [[Линейный классификатор]], непрерывные аппроксимации пороговых функций потерь.
* [[Линейный классификатор]], непрерывные аппроксимации пороговых функций потерь.
Строка 125: Строка 125:
== Второй семестр ==
== Второй семестр ==
-
=== Кластеризация: эвристические и статистические алгоритмы ===
+
=== Кластеризация ===
* Постановка задачи [[кластеризация|кластеризации]]. Примеры прикладных задач.
* Постановка задачи [[кластеризация|кластеризации]]. Примеры прикладных задач.
* [[Графовые алгоритмы кластеризации]]. Алгоритм связных компонент.
* [[Графовые алгоритмы кластеризации]]. Алгоритм связных компонент.
Строка 131: Строка 131:
* Псевдокод алгоритма: [[ФОРЭЛ]].
* Псевдокод алгоритма: [[ФОРЭЛ]].
* Функционалы качества кластеризации.
* Функционалы качества кластеризации.
-
* Статистические алгоритмы: [[EM-алгоритм]]. Псевдокод алгоритма [[k-means]].
+
* Статистические алгоритмы: [[EM-алгоритм]] и [[k-means]], псевдокод.
-
=== Иерерхическая кластеризация и многомерное шкалирование ===
+
=== Таксономия и многомерное шкалирование ===
* [[Агломеративная кластеризация]]: псевдокод алгоритма, [[формула Ланса-Вильямса]] и её частные случаи.
* [[Агломеративная кластеризация]]: псевдокод алгоритма, [[формула Ланса-Вильямса]] и её частные случаи.
* Алгоритм построения [[дендрограмма|дендрограммы]]. Определение числа кластеров.
* Алгоритм построения [[дендрограмма|дендрограммы]]. Определение числа кластеров.
Строка 143: Строка 143:
* Совмещение многомерного шкалирования и иерархической кластеризации.
* Совмещение многомерного шкалирования и иерархической кластеризации.
-
=== Сети Кохонена и обучающееся векторное квантование ===
+
=== Сети Кохонена ===
-
* [[Сеть Кохонена]]. [[Конкурентное обучение]], стратегии WTA и WTM.
+
* [[Сеть Кохонена]]. [[Конкурентное обучение]], стратегии WTA и WTM, обучающееся векторное квантование.
* [[Самоорганизующаяся карта Кохонена]]. Применение для визуального анализа данных.
* [[Самоорганизующаяся карта Кохонена]]. Применение для визуального анализа данных.
* [[Сети встречного распространения]], их применение для кусочно-постоянной и гладкой аппроксимации функций.
* [[Сети встречного распространения]], их применение для кусочно-постоянной и гладкой аппроксимации функций.
Строка 205: Строка 205:
* [[Переключающиеся решающие деревья]] (alternating decision tree).
* [[Переключающиеся решающие деревья]] (alternating decision tree).
-
=== Взвешенное голосование логических закономерностей ===
+
=== Взвешенное голосование закономерностей ===
* Принцип голосования. Проблема различности (диверсификации) закономерностей.
* Принцип голосования. Проблема различности (диверсификации) закономерностей.
* Методы синтеза конъюнктивных закономерностей. Псевдокод: [[алгоритм КОРА]], [[алгоритм ТЭМП]].
* Методы синтеза конъюнктивных закономерностей. Псевдокод: [[алгоритм КОРА]], [[алгоритм ТЭМП]].

Версия 23:57, 31 августа 2008

Содержание

Машинное обучение возникло на стыке прикладной статистики, оптимизации, дискретного анализа, и за последние 30 лет оформилось в самостоятельную математическую дисциплину. Методы машинного обучения составляют основу ещё более молодой дисциплины — интеллектуального анализа данных (data mining).

В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Отдельные теоремы приводятся с доказательствами.

Все методы излагаются по единой схеме:

  • исходные идеи и эвристики;
  • их формализация и математическая теория;
  • описание алгоритма в виде слабо формализованного псевдокода;
  • анализ достоинств, недостатков и границ применимости;
  • пути устранения недостатков;
  • сравнение с другими методами;
  • примеры прикладных задач.

Данный курс существенно расширяет и углубляет набор тем, рекомендованный международным стандартом ACM/IEEE Computing Curricula 2001 по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).

Курс читается студентам 3 курса кафедры «Интеллектуальные системы / интеллектуальный анализ данных» ФУПМ МФТИ с 2004 года и студентам 3 курса кафедры «Математические методы прогнозирования» ВМиК МГУ с 2007 года. На материал данного курса существенно опираются последующие кафедральные курсы. На кафедре ММП ВМиК МГУ параллельно с данным курсом и в дополнение к нему читается спецкурс Теория надёжности обучения по прецедентам, посвящённый проблемам переобучения и оценивания обобщающей способности.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.

Первый семестр

Вводная лекция

Байесовские алгоритмы классификации

Параметрическое оценивание плотности

Разделение смеси распределений

  • Смесь распределений.
  • EM-алгоритм: основная идея, понятие скрытых переменных. «Вывод» алгоритма без обоснования сходимости. Псевдокод EM-алгоритма. Критерий останова. Выбор начального приближения. Выбор числа компонентов смеси.
  • Стохастический EM-алгоритм.
  • Смесь многомерных нормальных распределений. Сеть радиальных базисных функций (RBF) и применение EM-алгоритма для её настройки.

Линейные алгоритмы классификации

Логистическая регрессия

  • Гипотеза экспоненциальности функций правдоподобия классов. Теорема о линейности байесовского оптимального классификатора. Оценивание апостериорных вероятностей классов с помощью сигмоидной функции активации.
  • Логистическая регрессия. Принцип максимума правдоподобия и логарифмическая функция потерь.
  • Настройка порога решающего правила по критерию числа ошибок I и II рода, кривая ошибок (lift curve), отказы от классификации.
  • Пример прикладной задачи: кредитный скоринг и скоринговые карты.

Нейронные сети

Метод опорных векторов

  • Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin).
  • Случай линейной разделимости. Задача квадратичного программирования и двойственная задача. Понятие опорных векторов.
  • Случай отсутствия линейной разделимости. Связь с минимизацией эмпирического риска, кусочно-линейная функция потерь. Двойственная задача. Отличие от предыдущего случая. Выбор константы C.
  • Функция ядра (kernel functions), спрямляющее пространство, теорема Мерсера.
  • Способы построения ядер. Примеры ядер.
  • Сопоставление SVM и RBF-сети.

Методы оптимизации SVM

  • Обучение SVM методом последовательной минимизации. Псевдокод: алгоритм SMO.
  • Обучение SVM методом активных ограничений. Псевдокод: алгоритм INCAS.
  • SVM-регрессия.

Метрические алгоритмы классификации

Непараметрическая регрессия

Многомерная линейная регрессия

Шаговая регрессия

Нелинейная параметрическая регрессия

Прогнозирование временных рядов

  • Аддитивная модель временного ряда: тренд, сезонность, цикличность. Модель Бокса-Дженкинса. Модель ARIMA — авторегрессии и интегрированного скользящего среднего.
  • Адаптивные модели. Примеры экономических приложений.
  • Неквадратичные функции потерь, примеры прикладных задач.

Второй семестр

Кластеризация

Таксономия и многомерное шкалирование

Сети Кохонена

Алгоритмические композиции

Бустинг, бэггинг и аналоги

Метод комитетов

  • Общее понятие: комитет системы ограничений. Комитеты большинства, простое и взвешенное голосование (z,p-комитеты).
  • Теоремы о существовании комитетного решения.
  • Сопоставление комитета линейных неравенств с нейронной сетью.
  • Максимальная совместная подсистема, минимальный комитет. Теоремы об NP-полноте задачи поиска минимального комитета.
  • Алгоритм построения комитета, близкого к минимальному. Верхняя оценка числа членов комитета.

Нелинейные алгоритмические композиции

  • Смесь экспертов, область компетентности алгоритма.
  • Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический.
  • Построение смесей экспертов с помощью EM-алгоритма.
  • Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии.

Оценивание и выбор моделей

Методы отбора признаков

Логические алгоритмы классификации

Решающие списки и деревья

Взвешенное голосование закономерностей

  • Принцип голосования. Проблема различности (диверсификации) закономерностей.
  • Методы синтеза конъюнктивных закономерностей. Псевдокод: алгоритм КОРА, алгоритм ТЭМП.
  • Алгоритм бустинга. Теорема сходимости.
  • Примеры прикладных задач: кредитный скоринг, прогнозирование ухода клиентов.

Алгоритмы вычисления оценок

Поиск ассоциативных правил

Личные инструменты