Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м
(обнуление расписания спецкурсов перед началом нового семестра)
Строка 56: Строка 56:
|-
|-
!16:20 – 17:55
!16:20 – 17:55
-
|<small>С/К [[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|ИВКЛ]], Гуров С.И., 704</small> <br>
+
|
-
<small>С/К [[Логический анализ данных в распознавании (курс лекций, Е.В. Дюкова)|ЛАДвР]], [[Участник:Djukova|Дюкова Е.В.]], 678</small>
+
|
|
|
|
-
|<small>С/К «Методы поиска эмпирических закономерностей в многомерных данных», лектор [[Участник:Сенько Олег|Сенько Олег Валентинович]], 607
+
|
|
|
|-
|-
!18:05 – 19:40
!18:05 – 19:40
-
|<small>С/С Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: [[Участник:Sgur|С.И. Гуров]], [[Участник:AIM|А.И. Майсурадзе]], 606</small>
+
|
-
|<small>С/С [[vetrovsem|БММО]], Ветров Д.П., 510</small> <br>
+
|
-
<small>С/К 18:00 [[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|НМАДиК]], [[Участник:Rvv|В.В.Рязанов]], 504</small>
+
|
|
|
|
Строка 82: Строка 80:
|
|
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА -->
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА -->
 +
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА -->
 +
}}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ-->
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]], проходит по понедельникам в ауд. 704, начало в 16-00. Первое занятие 17 февраля.
+
'''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]].
|Описание =
|Описание =
В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Логический анализ данных в распознавании (курс лекций, Е.В. Дюкова)|Логический анализ данных в распознавании]]''', [[Участник:Djukova|Е.В. Дюкова]], проходит по понедельникам в ауд. 678, начало в 16-20.
+
'''[[Логический анализ данных в распознавании (курс лекций, Е.В. Дюкова)|Логический анализ данных в распознавании]]''', [[Участник:Djukova|Е.В. Дюкова]].
|Описание =
|Описание =
Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|Нестатистические методы анализа данных и классификации]]''', [[Участник:Rvv|В.В. Рязанов]], проходит по вторникам в ауд. 504, начало в 18-05.
+
'''[[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|Нестатистические методы анализа данных и классификации]]''', [[Участник:Rvv|В.В. Рязанов]].
|Описание =
|Описание =
Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.
Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''Методы поиска достоверных эмпирических закономерностей в многомерных данных''', [[Участник:Сенько Олег|О.В. Сенько]], проходит по четвергам в ауд. 607, начало в 16-20.
+
'''Методы поиска достоверных эмпирических закономерностей в многомерных данных''', [[Участник:Сенько Олег|О.В. Сенько]].
|Описание =
|Описание =
}}
}}
-
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА -->
 
-
}}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ-->
 
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
'''[[Вероятностные тематические модели (курс лекций, К.В.Воронцов)|Вероятностные тематические модели]]''', [[Участник:Vokov|К.В. Воронцов]].
'''[[Вероятностные тематические модели (курс лекций, К.В.Воронцов)|Вероятностные тематические модели]]''', [[Участник:Vokov|К.В. Воронцов]].
|Описание =
|Описание =
-
}}
 
-
{{Курс|Режим = {{{1}}}|Название =
 
-
'''[[Бммо|Байесовские методы машинного обучения]]''', [[Участник:Dmitry Vetrov|Д.П. Ветров]], [[Участник:Kropotov|Д.А. Кропотов]].
 
-
|Описание =
 
-
В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
 
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
Строка 117: Строка 110:
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Спецкурс «Прикладные задачи анализа данных»|Прикладные задачи анализа данных]]''', [[Участник:Dj|А.Г. Дьяконов]], проходит по понедельникам, начало в 16-20 (посещение закрытое).
+
'''[[Спецкурс «Прикладные задачи анализа данных»|Прикладные задачи анализа данных]]''', [[Участник:Dj|А.Г. Дьяконов]] (посещение закрытое).
|Описание =
|Описание =
}}
}}
Строка 173: Строка 166:
|'''[[Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары|Все спецкурсы]]'''
|'''[[Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары|Все спецкурсы]]'''
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦСЕМИНАРЫ ТЕКУЩЕГО СЕМЕСТРА-->
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦСЕМИНАРЫ ТЕКУЩЕГО СЕМЕСТРА-->
 +
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА-->
 +
}}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦСЕМИНАРЫ-->
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[vetrovsem|Байесовские методы машинного обучения]]''', [[Участник:Dmitry Vetrov|Д.П.Ветров]], проходит по вторникам в ауд. 510, начало в 18-10. Первое занятие 11 февраля.
+
'''[[vetrovsem|Байесовские методы машинного обучения]]''', [[Участник:Dmitry Vetrov|Д.П.Ветров]].
|Описание =
|Описание =
}}
}}
-
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА-->
 
-
}}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦСЕМИНАРЫ-->
 
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
'''[[Алгебра над алгоритмами и эвристический поиск закономерностей]]''', [[Участник:Dj|А.Г.Дьяконов]].
'''[[Алгебра над алгоритмами и эвристический поиск закономерностей]]''', [[Участник:Dj|А.Г.Дьяконов]].
Строка 184: Строка 177:
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Анализ и оценивание информации представленной в виде изображений]]'''.
+
'''[[Анализ и оценивание информации представленной в виде изображений]]''', И.Б.Гуревич.
|Описание =
|Описание =
}}
}}
Строка 192: Строка 185:
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''Учебно-научный семинар «Интеллектуальный анализ данных: новые задачи и методы»''', доц., к.ф.-м.н. [[Участник:Sgur|С.И.Гуров]], доц., к.ф.-м.н. [[Участник:AIM|А.И.Майсурадзе]].
+
'''Учебно-научный семинар «Интеллектуальный анализ данных: новые задачи и методы»''', [[Участник:Sgur|С.И.Гуров]], [[Участник:AIM|А.И.Майсурадзе]].
|Описание =
|Описание =
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
'''[[Анализ данных в метрических пространствах]]''', [[Участник:AIM|А.И.Майсурадзе]].
'''[[Анализ данных в метрических пространствах]]''', [[Участник:AIM|А.И.Майсурадзе]].
-
|Описание =
 
-
}}
 
-
{{Курс|Режим = {{{1}}}|Название =
 
-
'''[[Спектральные методы в задачах математической биологии]]''', Ф.Ф.Дедус.
 
|Описание =
|Описание =
}}
}}
Строка 213: Строка 202:
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
'''[[Комбинаторные основы теории информации]]''', В.К.Леонтьев.
'''[[Комбинаторные основы теории информации]]''', В.К.Леонтьев.
-
|Описание =
 
-
}}
 
-
{{Курс|Режим = {{{1}}}|Название =
 
-
'''[[Вычислительные задачи математической биологии и биофизики]]''', С.А.Махортых, А.Н.Панкратов.
 
|Описание =
|Описание =
}}
}}
Строка 228: Строка 213:
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Проблемно-ориентированные схемы распознавания]]''', [[Рудаков, Константин Владимирович|Рудаков Константин Владимирович]], [[Участник:Yury Chekhovich|Ю.В.Чехович]].
+
'''[[Проблемно-ориентированные схемы распознавания]]''', [[Рудаков, Константин Владимирович|К.В.Рудаков]], [[Участник:Yury Chekhovich|Ю.В.Чехович]].
|Описание =
|Описание =
}}
}}

Версия 08:58, 11 августа 2014

 
   
Кафедральные курсы
Спецкурсы/спецсеминары
Новости
Расписание
Учебный план
Персональный состав
Материалы
Диссертации/дипломные работы
Просеминар
  Тел. +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь: Д.П. Ветров
Все контакты

Содержание

Расписание спецкурсов и спецсеминаров в весеннем семестре 2013/2014 уч.г.

Пара Понедельник Вторник Среда Четверг Пятница
8:45 – 10:20
10:30 – 12:05
12:15 – 13:50
14:35 – 16:10
16:20 – 17:55
18:05 – 19:40
20:00 – 21:35

Расписание основных занятий

Спецкурсы

  • Исчисления высказываний классической логики, С.И. Гуров.
    В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
  • Логический анализ данных в распознавании, Е.В. Дюкова.
    Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
  • Нестатистические методы анализа данных и классификации, В.В. Рязанов.
    Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.
  • Методы поиска достоверных эмпирических закономерностей в многомерных данных, О.В. Сенько.
  • Логико-статистические модели в распознавании, прогнозировании и интеллектуальном анализе данных, О.В. Сенько.
    Рассматриваются методы интеллектуального анализа данных, основанные на выделении в многомерном пространстве прогностических переменных областей, в которых значения прогнозируемой переменной достоверно отличаются от средних значений по всей выборке. Верификация выявленных закономерностей проводится с помощью рандомизированных перестановочных тестов. Приводятся примеры использования рассматриваемых методов при решении разнообразных прикладных задач.
  • Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус. Лекции проходят один раз в две недели по 4 академических часа.
    Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
  • Вычислительные задачи математической биологии, А.Н. Панкратов. Лекции проходят один раз в две недели по 4 академических часа.
    В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
  • Методы оптимизации в машинном обучении, Д.А. Кропотов.
    В спецкурсе рассматриваются классические и современные методы непрерывной оптимизации, а также особенности их применения для задач оптимизации, возникающих в машинном обучении. Основной упор в изложении делается на практические аспекты реализации и использования методов. Спецкурс поддерживается практическими заданиями.
  • Извлечение информации из изображений, И.Б. Гуревич.
    В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
  • Теория надёжности обучения по прецедентам, К.В. Воронцов.
    Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
  • Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий.
    Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
  • Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
    Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
  • Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
    Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.

Спецсеминары

Ссылки

http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.

Личные инструменты