Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары
Материал из MachineLearning.
(Различия между версиями)
												
			
			м   | 
				 (обнуление расписания спецкурсов перед началом нового семестра)  | 
			||
| Строка 56: | Строка 56: | ||
 |-  |  |-  | ||
 !16:20 – 17:55   |  !16:20 – 17:55   | ||
| - |  |  | + |  |  | 
| - | + | ||
 |   |  |   | ||
 |   |  |   | ||
| - |  |  | + |  |  | 
 |   |  |   | ||
 |-  |  |-  | ||
 !18:05 – 19:40   |  !18:05 – 19:40   | ||
| - |  |  | + |  |  | 
| - |  |  | + |  |  | 
| - | + | ||
 |  |  |  | ||
 |  |  |  | ||
| Строка 82: | Строка 80: | ||
|  | |  | ||
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА -->  | |<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА -->  | ||
| + | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА -->  | ||
| + | }}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ-->  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]]  | + | '''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]].  | 
|Описание =   | |Описание =   | ||
В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.  | В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.  | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''[[Логический анализ данных в распознавании (курс лекций, Е.В. Дюкова)|Логический анализ данных в распознавании]]''', [[Участник:Djukova|Е.В. Дюкова]]  | + | '''[[Логический анализ данных в распознавании (курс лекций, Е.В. Дюкова)|Логический анализ данных в распознавании]]''', [[Участник:Djukova|Е.В. Дюкова]].  | 
|Описание =   | |Описание =   | ||
Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.   | Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.   | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''[[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|Нестатистические методы анализа данных и классификации]]''', [[Участник:Rvv|В.В. Рязанов]]  | + | '''[[Нестатистические методы анализа данных и классификации (курс лекций, В.В.Рязанов)|Нестатистические методы анализа данных и классификации]]''', [[Участник:Rvv|В.В. Рязанов]].  | 
|Описание =  | |Описание =  | ||
Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.  | Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.  | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''Методы поиска достоверных эмпирических закономерностей в многомерных данных''', [[Участник:Сенько Олег|О.В. Сенько]]  | + | '''Методы поиска достоверных эмпирических закономерностей в многомерных данных''', [[Участник:Сенько Олег|О.В. Сенько]].  | 
|Описание =   | |Описание =   | ||
}}  | }}  | ||
| - | |||
| - | |||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
'''[[Вероятностные тематические модели (курс лекций, К.В.Воронцов)|Вероятностные тематические модели]]''', [[Участник:Vokov|К.В. Воронцов]].  | '''[[Вероятностные тематические модели (курс лекций, К.В.Воронцов)|Вероятностные тематические модели]]''', [[Участник:Vokov|К.В. Воронцов]].  | ||
|Описание =   | |Описание =   | ||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| Строка 117: | Строка 110: | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''[[Спецкурс «Прикладные задачи анализа данных»|Прикладные задачи анализа данных]]''', [[Участник:Dj|А.Г. Дьяконов]]  | + | '''[[Спецкурс «Прикладные задачи анализа данных»|Прикладные задачи анализа данных]]''', [[Участник:Dj|А.Г. Дьяконов]] (посещение закрытое).  | 
|Описание =   | |Описание =   | ||
}}  | }}  | ||
| Строка 173: | Строка 166: | ||
|'''[[Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары|Все спецкурсы]]'''  | |'''[[Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары|Все спецкурсы]]'''  | ||
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦСЕМИНАРЫ ТЕКУЩЕГО СЕМЕСТРА-->  | |<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦСЕМИНАРЫ ТЕКУЩЕГО СЕМЕСТРА-->  | ||
| + | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА-->  | ||
| + | }}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦСЕМИНАРЫ-->  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''[[vetrovsem|Байесовские методы машинного обучения]]''', [[Участник:Dmitry Vetrov|Д.П.Ветров]]  | + | '''[[vetrovsem|Байесовские методы машинного обучения]]''', [[Участник:Dmitry Vetrov|Д.П.Ветров]].  | 
|Описание =  | |Описание =  | ||
}}  | }}  | ||
| - | |||
| - | |||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
'''[[Алгебра над алгоритмами и эвристический поиск закономерностей]]''', [[Участник:Dj|А.Г.Дьяконов]].  | '''[[Алгебра над алгоритмами и эвристический поиск закономерностей]]''', [[Участник:Dj|А.Г.Дьяконов]].  | ||
| Строка 184: | Строка 177: | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''[[Анализ и оценивание информации представленной в виде изображений]]'''.  | + | '''[[Анализ и оценивание информации представленной в виде изображений]]''', И.Б.Гуревич.  | 
|Описание =   | |Описание =   | ||
}}  | }}  | ||
| Строка 192: | Строка 185: | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''Учебно-научный семинар «Интеллектуальный анализ данных: новые задачи и методы»''',   | + | '''Учебно-научный семинар «Интеллектуальный анализ данных: новые задачи и методы»''', [[Участник:Sgur|С.И.Гуров]], [[Участник:AIM|А.И.Майсурадзе]].  | 
|Описание =   | |Описание =   | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
'''[[Анализ данных в метрических пространствах]]''', [[Участник:AIM|А.И.Майсурадзе]].  | '''[[Анализ данных в метрических пространствах]]''', [[Участник:AIM|А.И.Майсурадзе]].  | ||
| - | |||
| - | |||
| - | |||
| - | |||
|Описание =   | |Описание =   | ||
}}  | }}  | ||
| Строка 213: | Строка 202: | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
'''[[Комбинаторные основы теории информации]]''', В.К.Леонтьев.  | '''[[Комбинаторные основы теории информации]]''', В.К.Леонтьев.  | ||
| - | |||
| - | |||
| - | |||
| - | |||
|Описание =   | |Описание =   | ||
}}  | }}  | ||
| Строка 228: | Строка 213: | ||
}}  | }}  | ||
{{Курс|Режим = {{{1}}}|Название =   | {{Курс|Режим = {{{1}}}|Название =   | ||
| - | '''[[Проблемно-ориентированные схемы распознавания]]''', [[Рудаков, Константин Владимирович|Рудаков   | + | '''[[Проблемно-ориентированные схемы распознавания]]''', [[Рудаков, Константин Владимирович|К.В.Рудаков]], [[Участник:Yury Chekhovich|Ю.В.Чехович]].  | 
|Описание =   | |Описание =   | ||
}}  | }}  | ||
Версия 08:58, 11 августа 2014
  | 
  | 
  | Тел. +7-495-939-4202 e-mail: Ученый секретарь: Д.П. Ветров Все контакты  | 
Содержание | 
Расписание спецкурсов и спецсеминаров в весеннем семестре 2013/2014 уч.г.
| Пара | Понедельник | Вторник | Среда | Четверг | Пятница | 
|---|---|---|---|---|---|
| 8:45 – 10:20 | |||||
| 10:30 – 12:05 | |||||
| 12:15 – 13:50 | |||||
| 14:35 – 16:10 | |||||
| 16:20 – 17:55 | |||||
| 18:05 – 19:40 | |||||
| 20:00 – 21:35 | 
Спецкурсы
- Исчисления высказываний классической логики, С.И. Гуров.
- В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
 
 
- Логический анализ данных в распознавании, Е.В. Дюкова.
- Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
 
 
- Нестатистические методы анализа данных и классификации, В.В. Рязанов.
- Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.
 
 
- Методы поиска достоверных эмпирических закономерностей в многомерных данных, О.В. Сенько.
 
- Задачи и алгоритмы вычислительной геометрии, Л.М. Местецкий.
 
- Прикладные задачи анализа данных, А.Г. Дьяконов (посещение закрытое).
 
- Логико-статистические модели в распознавании, прогнозировании и интеллектуальном анализе данных, О.В. Сенько.
- Рассматриваются методы интеллектуального анализа данных, основанные на выделении в многомерном пространстве прогностических переменных областей, в которых значения прогнозируемой переменной достоверно отличаются от средних значений по всей выборке. Верификация выявленных закономерностей проводится с помощью рандомизированных перестановочных тестов. Приводятся примеры использования рассматриваемых методов при решении разнообразных прикладных задач.
 
 
- Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус. Лекции проходят один раз в две недели по 4 академических часа.
- Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
 
 
- Вычислительные задачи математической биологии, А.Н. Панкратов. Лекции проходят один раз в две недели по 4 академических часа.
- В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
 
 
- Методы оптимизации в машинном обучении, Д.А. Кропотов.
- В спецкурсе рассматриваются классические и современные методы непрерывной оптимизации, а также особенности их применения для задач оптимизации, возникающих в машинном обучении. Основной упор в изложении делается на практические аспекты реализации и использования методов. Спецкурс поддерживается практическими заданиями.
 
 
- Извлечение информации из изображений, И.Б. Гуревич.
- В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
 
 
- Теория надёжности обучения по прецедентам, К.В. Воронцов.
- Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
 
 
- Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий.
- Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
 
 
- Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
- Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
 
 
- Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
- Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.
 
 
Спецсеминары
- Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования, К.В.Воронцов.
 
- Учебно-научный семинар «Интеллектуальный анализ данных: новые задачи и методы», С.И.Гуров, А.И.Майсурадзе.
 
- Комбинаторные основы теории информации, В.К.Леонтьев.
 
Ссылки
http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.


