Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(+ спецкурс Козлова)
(+ спецкурс Кропотова)

Версия 17:17, 7 сентября 2014

 
   
Кафедральные курсы
Спецкурсы/спецсеминары
Новости
Расписание
Учебный план
Персональный состав
Материалы
Диссертации/дипломные работы
Просеминар
  Тел. +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь: Д.П. Ветров
Все контакты

Содержание

Расписание спецкурсов и спецсеминаров в весеннем семестре 2013/2014 уч.г.

Пара Понедельник Вторник Среда Четверг Пятница
8:45 – 10:20
10:30 – 12:05
12:15 – 13:50
14:35 – 16:10
16:20 – 17:55 С/К Модели распознавания, Козлов В.Н., 506
18:05 – 19:40 С/К МОМО, Кропотов Д.А., 508 С/С БММО, Ветров Д.П., 637
20:00 – 21:35

Расписание основных занятий

Спецкурсы

  • Модели распознавания, Козлов Вадим Никитович, проходит по средам, начало в 16-20, ауд. 506. Первое занятие состоится 10 сентября (среда).
    В курсе представлены как классические подходы к распознаванию образов (дискриминантный подход в детерминированной и вероятностной ипостасях, структурно-лингвистический, тестовый и алгебраический подходы), так и разработки последнего времени, включая те, которые делались в МГУ. Курс является существенно расширенным и усложненным вариантом курса Распознающие системы, прочитанного автором в интернете на сайтах образовательной организации Универсариум. Приглашаются студенты 2-4 курсов, все желающие.
  • Методы оптимизации в машинном обучении, Д.А. Кропотов, проходит по понедельникам в ауд. 508, начало в 18-10. Первое занятие состоится 15 сентября.
    В спецкурсе рассматриваются классические и современные методы непрерывной оптимизации, а также особенности их применения для задач оптимизации, возникающих в машинном обучении. Основной упор в изложении делается на практические аспекты реализации и использования методов. Спецкурс поддерживается практическими заданиями.
  • Исчисления высказываний классической логики, С.И. Гуров.
    В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
  • Логический анализ данных в распознавании, Е.В. Дюкова.
    Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
  • Нестатистические методы анализа данных и классификации, В.В. Рязанов.
    Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях.
  • Методы поиска достоверных эмпирических закономерностей в многомерных данных, О.В. Сенько.
  • Логико-статистические модели в распознавании, прогнозировании и интеллектуальном анализе данных, О.В. Сенько.
    Рассматриваются методы интеллектуального анализа данных, основанные на выделении в многомерном пространстве прогностических переменных областей, в которых значения прогнозируемой переменной достоверно отличаются от средних значений по всей выборке. Верификация выявленных закономерностей проводится с помощью рандомизированных перестановочных тестов. Приводятся примеры использования рассматриваемых методов при решении разнообразных прикладных задач.
  • Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус. Лекции проходят один раз в две недели по 4 академических часа.
    Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
  • Вычислительные задачи математической биологии, А.Н. Панкратов. Лекции проходят один раз в две недели по 4 академических часа.
    В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
  • Извлечение информации из изображений, И.Б. Гуревич.
    В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
  • Теория надёжности обучения по прецедентам, К.В. Воронцов.
    Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
  • Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий.
    Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
  • Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
    Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
  • Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
    Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.

Спецсеминары

Ссылки

http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.

Личные инструменты