Участник:IShibaev

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 6: Строка 6:
<li>Направление «''Интеллектуальный анализ данных''»</li>
<li>Направление «''Интеллектуальный анализ данных''»</li>
</ul>
</ul>
 +
 +
=== Весна 2017, 6-й семестр===
 +
'''Выпуклые релаксации для задачи множественного выравнивания (проблема синхронизации в SO(3))'''
 +
 +
''В работе рассматривается задача множественного выравнивания третичных белковых структур. Задача множественного выравнивания состоит в том, чтобы для множества структур получить совмещающие их преобразования, минимизируя сумму попарных расстояний между атомами. Для решения задачи множественного выравнивания применяется алгоритм попарного выравнивания, решающий эту задачу для случая двух структур. В случае наличия в наборе структур разных конформаций алгоритм попарного выравнивания, вообще говоря, не находит глобального минимума в задаче множественного выравнивания ( решение задачи множественного выравнивания). В работе рассматривается матричная оптимизационная постановка задачи множественного выравнивания, проводятся вычислительные эксперименты (на выборке белковых структур из базы данных RCSB PDB), сравнение качества работы алгоритма попарного выравнивания и алгоритмов, полученных в результате выпуклой релаксации оптимизационной задачи множественного выравнивания. Отбрасываются невыпуклые ограничения на ранг и ортогональность, что позволяет свести задачу к выпуклой.''

Версия 09:53, 30 сентября 2017

Шибаев Иннокентий Андреевич

Весна 2017, 6-й семестр

Выпуклые релаксации для задачи множественного выравнивания (проблема синхронизации в SO(3))

В работе рассматривается задача множественного выравнивания третичных белковых структур. Задача множественного выравнивания состоит в том, чтобы для множества структур получить совмещающие их преобразования, минимизируя сумму попарных расстояний между атомами. Для решения задачи множественного выравнивания применяется алгоритм попарного выравнивания, решающий эту задачу для случая двух структур. В случае наличия в наборе структур разных конформаций алгоритм попарного выравнивания, вообще говоря, не находит глобального минимума в задаче множественного выравнивания ( решение задачи множественного выравнивания). В работе рассматривается матричная оптимизационная постановка задачи множественного выравнивания, проводятся вычислительные эксперименты (на выборке белковых структур из базы данных RCSB PDB), сравнение качества работы алгоритма попарного выравнивания и алгоритмов, полученных в результате выпуклой релаксации оптимизационной задачи множественного выравнивания. Отбрасываются невыпуклые ограничения на ранг и ортогональность, что позволяет свести задачу к выпуклой.

Личные инструменты