Нормальное распределение
Материал из MachineLearning.
(категория) |
м (это задание!) |
||
Строка 84: | Строка 84: | ||
[[Категория:Вероятностные распределения]] | [[Категория:Вероятностные распределения]] | ||
+ | |||
+ | {{Задание|Bogdan|Vokov|31 декабря 2009}} |
Версия 20:14, 19 ноября 2009
Плотность вероятности 325px|Плотность нормального распределения Зеленая линия соответствует стандартному нормальному распределению | |
Функция распределения 325px|Функция распределения нормального распределения Цвета на этом графике соответствуют графику наверху | |
Параметры | - коэффициент сдвига (вещественное число) - коэффициент масштаба (вещественный, строго положительный) |
Носитель | |
Плотность вероятности | |
Функция распределения | |
Математическое ожидание | |
Медиана | |
Мода | |
Дисперсия | |
Коэффициент асимметрии | |
Коэффициент эксцесса | |
Информационная энтропия | |
Производящая функция моментов | |
Характеристическая функция |
Нормальное распределение, также называемое распределением Гаусса, — распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.
Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Содержание |
Моделирование нормальных случайных величин
Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.
Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.
Свойства
Если случайные величины и независимы и имеют нормальное распределение с математическими ожиданиями и и дисперсиями и соответственно, то также имеет нормальное распределение с математическим ожиданием и дисперсией .
Статистическая проверка принадлежности нормальному распределению
Поскольку нормальное распределение часто встречается на практике, то для него разработаны специальные статистические критерии проверки на «нормальность»:
- Критерий Пирсона
- Критерий Колмогорова-Смирнова
- Шаблон:Не переведено
- Шаблон:Не переведено
- Шаблон:Не переведено
- Шаблон:Не переведено — не столько критерий, сколько графическая иллюстрация: точки специально построенного графика должны лежать почти на одной прямой.
Многомерное нормальное распределение
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения.
Случайный вектор имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:
- Произвольная линейная комбинация компонентов вектора имеет нормальное распределение или является константой.
- Существует вектор независимых стандартных нормальных случайных величин , вещественный вектор и матрица размерности , такие что:
- .
- Существует вектор и неотрицательно определённая симметричная матрица размерности , такие что плотность вероятности вектора имеет вид:
- ,
где — определитель матрицы , а — матрица обратная к .
- Существует вектор и неотрицательно определённая симметричная матрица размерности , такие что характеристическая функция вектора имеет вид:
- .
Замечания
- Если одно из приведённых выше определений принято в качестве основного, то другие выводятся в качестве теорем.
- Вектор является вектором средних значений , а — его ковариационная матрица.
- В случае , многомерное нормальное распределение сводится к обычному нормальному распределению.
- Если случайный вектор имеет многомерное нормальное распределение, то пишут .
Свойства многомерного нормального распределения
- Если вектор имеет многомерное нормальное распределение, то его компоненты имеют одномерное нормальное распределение. Обратное, вообще говоря, неверно!
- Если случайные величины имеют одномерное нормальное распределение и совместно независимы, то случайный вектор имеет многомерное нормальное распределение. Матрица ковариаций такого вектора диагональна.
- Если имеет многомерное нормальное распределение, и его компоненты попарно некоррелированы, то они независимы. Однако, если только компоненты имеют одномерное нормальное распределение и попарно не коррелируют, то отсюда не следует, что они независимы.
- Контрпример. Пусть , а с равными вероятностями. Тогда если , то корреляция и равна нулю. Однако, эти случайные величины зависимы.
- Многомерное нормальное распределение устойчиво относительно линейных преобразований. Если , а — произвольная матрица размерности , то
- .
Заключение
Нормальное распределение наиболее часто встречается в природе, нормально распределёнными являются следующие случайные величины:
- отклонение при стрельбе
- ошибки при измерениях
- рост человека
Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный). Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием предельной теоремы Ляпунова.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |