Участник:Василий Ломакин/Критерий Уилкоксона двухвыборочный

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 44: Строка 44:
== Применение критерия ==
== Применение критерия ==
-
В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок в случае, когда нет предположений о дисперсиях.<ref>Лапач С. Н. Статистика в науке и бизнесе. — 160 с.</ref> В случае равных дисперсий рекомендуется применять [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]].<ref>Лапач С. Н. Статистика в науке и бизнесе. — 118 с.</ref> Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда <tex>\mathbb{P} \{ x<y \} = 1/2</tex>, и медианы выборок не совпадают. При этом можно сказать, что недостатки критерия Уилкоксона не являются исключением, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны.<ref>''Орлов А. И.'' Эконометрика. — §4.5</ref> При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.
+
В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок в случае, когда нет предположений о дисперсиях.<ref>Лапач С. Н. Статистика в науке и бизнесе. — 160 с.</ref> В случае равных дисперсий рекомендуется применять [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]].<ref>Лапач С. Н. Статистика в науке и бизнесе. — 118 с.</ref> Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда <tex>\mathbb{P} \{ x<y \} = 1/2</tex>, и медианы выборок не совпадают. При этом можно сказать, что недостатки критерия Уилкоксона не являются исключением, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны.<ref>Орлов А. И. Эконометрика. — §4.5</ref> При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.
== Примечания ==
== Примечания ==
Строка 53: Строка 53:
# ''Лапач С. Н. , Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
# ''Лапач С. Н. , Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
# ''Орлов А. И.'' Эконометрика. — М.: Экзамен, 2003. — 576 с.
# ''Орлов А. И.'' Эконометрика. — М.: Экзамен, 2003. — 576 с.
-
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — 454 с.
+
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — §4.5.
== Ссылки ==
== Ссылки ==

Версия 21:05, 12 декабря 2009

Критерий Уилкоксона (Вилкоксона) двухвыборочныйнепараметрический статистический критерий, используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Имеется аналог критерия Уилкоксона для связанных повторных наблюдений.

Содержание

Пример задачи

Задача - сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является порядковой).

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R};\; m \le n, в противном случае следует поменять выборки местами.

Дополнительное предположение: обе выборки простые, объединённая выборка независима;

Нулевая гипотеза H_0:\; \mathbb{P} \{ x<y \} = 1/2.

Вычисление статистики критерия:

  1. Построить общий вариационный ряд объединённой выборки x^{(1)} \leq \cdots \leq x^{(m+n)} и найти ранги r(x_i),\; r(y_i) всех элементов обеих выборок в общем вариационном ряду.
  2. Рассчитать суммы рангов, соответствующих обеим выборкам:
    R_x = \sum_{i=1}^m r(x_i);
    R_y = \sum_{i=1}^n r(y_i);
  3. Если размеры выборок совпадают (m=n), то значение статистики W будет равняется одной из сумм рангов R_x или R_y (любой). Если же выборки не равны, то W = R_x, то есть сумме рангов, соответствующей меньшей выборке.

Критерий (при уровне значимости \alpha):

Против альтернативы H_1:\; \mathbb{P} \{ x < y \} \neq 1/2:

если W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right] , то нулевая гипотеза отвергается. Здесь W_{\alpha} есть \alpha-квантиль табличного распределения Уилкоксона с параметрами m,\,n.

Асимптотический критерий:

Рассмотрим нормированную и центрированную статистика Уилкоксона:

\tilde W = \frac{W - \frac{m(m + n + 1)}{2}}{sqrt{\frac{mn(m + n + 1)}{12}}};

\tilde W асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы H_1) отвергается, если  |\tilde W| > \Phi_{1-\alpha/2} , где \Phi_{\alpha} есть \alpha-квантиль стандартного нормального распределения.

Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до m = n = 8.[1]

При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:

\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2}[2][3]
где k - количество только тех связок, в которые входят ранги как одной, так и другой выборок, t_1, \ldots, t_k - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину \tilde W не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1.

Применение критерия

В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок в случае, когда нет предположений о дисперсиях.[4] В случае равных дисперсий рекомендуется применять U-критерий Манна-Уитни.[5] Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда \mathbb{P} \{ x<y \} = 1/2, и медианы выборок не совпадают. При этом можно сказать, что недостатки критерия Уилкоксона не являются исключением, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны.[6] При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.

Примечания

  1. Лапач С. Н. Статистика в науке и бизнесе. — 161 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — 454 c.
  3. Лагутин М. Б. Наглядная математическая статистика. — 206 с.
  4. Лапач С. Н. Статистика в науке и бизнесе. — 160 с.
  5. Лапач С. Н. Статистика в науке и бизнесе. — 118 с.
  6. Орлов А. И. Эконометрика. — §4.5

Литература

  1. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
  2. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
  3. Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — 576 с.
  4. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — §4.5.

Ссылки

Личные инструменты