Критерий Ван дер Вардена

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: '''Критерий Ван дер Вардена(Van der Waerden criteria)''' — непараметрический статистический критерий, используе...)
(опечатки)
 
Строка 1: Строка 1:
-
'''Критерий Ван дер Вардена(Van der Waerden criteria)''' — [[непараметрический статистический критерий]], используемый для оценки различий между двумя [[выборка]]ми по признаку, измеренному в количественной [[шкала измерения|шкале]]. Критерий является ранговым, поэтому он инвариантен по отношению
+
'''Критерий Ван дер Вардена(Van der Waerden criteria)''' — [[непараметрический статистический критерий]], используемый для оценки различий между двумя [[выборка]]ми по признаку, измеренному в количественной или порядковой [[шкала измерения|шкале]]. Критерий является ранговым, поэтому он инвариантен по отношению
к любому монотонному преобразованию шкалы измерения.
к любому монотонному преобразованию шкалы измерения.
Существует обобщение критерия Ван дер Вардена для выявления различий между несколькими выборками.
Существует обобщение критерия Ван дер Вардена для выявления различий между несколькими выборками.
Строка 54: Строка 54:
Нормальную аппроксимацию статистики Ван дер Вардена можно использовать при
Нормальную аппроксимацию статистики Ван дер Вардена можно использовать при
-
<tex> m, n \geqslant 20</tex>.
+
<tex> m, n \ge 20</tex>.
В этом случае критерии (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>)
В этом случае критерии (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>)
Строка 91: Строка 91:
Нулевая гипотеза отвергается при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>, если <tex>T > \chi^2_{1 - \alpha, k - 1}</tex>, где
Нулевая гипотеза отвергается при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>, если <tex>T > \chi^2_{1 - \alpha, k - 1}</tex>, где
-
<tex>\chi^2_{1 - \alpha, k - 1}</tex> — [[квантиль]] уровня <tex>1 -\alpha</tex> с <tex>k - 1</tex> степенью свободы.
+
<tex>\chi^2_{1 - \alpha, k - 1}</tex> — [[квантиль]] уровня <tex>1 -\alpha</tex> распределения xи-квадрат с <tex>k - 1</tex> степенью свободы.

Текущая версия

Критерий Ван дер Вардена(Van der Waerden criteria)непараметрический статистический критерий, используемый для оценки различий между двумя выборками по признаку, измеренному в количественной или порядковой шкале. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения. Существует обобщение критерия Ван дер Вардена для выявления различий между несколькими выборками.

Содержание

Примеры задач

Пример 1. Первая выборка — это пациенты, которых лечили препаратом А. Вторая выборка — пациенты, которых лечили препаратом Б. Значения в выборках — это некоторая характеристика эффективности лечения (уровень метаболита в крови, температура через три дня после начала лечения, срок выздоровления, число койко-дней, и т.д.) Требуется выяснить, имеется ли значимое различие эффективности препаратов А и Б, или различия являются чисто случайными и объясняются «естественной» дисперсией выбранной характеристики.

Пример 2. Первая выборка — это поля, обработанные агротехническим методом А. Вторая выборка — поля, обработанные агротехническим методом Б. Значения в выборках — это урожайность. Требуется выяснить, является ли один из методов эффективнее другого, или различия урожайности обусловлены случайными факторами.

Пример 3.(использование многовыборочного критерия Ван дер Вардена) Нужно проверить, как лекарство помогает в снятии соответствующего симптома. Взяты несколько групп пациентов, и каждой из них назначается определенная доза препарата. Гипотеза состоит в том, что по мере увеличения уровня дозы больные чувствуют себя лучше.

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}.

Дополнительные предположения:

  • обе выборки простые, объединённая выборка независима;
  • выборки взяты из неизвестных непрерывных распределений F(x) и G(y) соответственно.

Нулевая гипотеза H_0:\; F(x) = G(y).

Статистика критерия:

  1. Построить общий вариационный ряд объединённой выборки z^{(1)} \leq \cdots \leq z^{(m+n)} и найти ранги r(x_i) элементов первой выборки в общем вариационном ряду.
  2. Статистика критерия Ван дер Вардена вычисляется по формуле:

X = \sum_{i = 1}^n u( \frac{r(x_i)}{ m + n + 1} ), где u( \frac{r(x_i)}{ m + n + 1} )квантиль уровня \frac{r(x_i)}{ m + n + 1} стандартного нормального распределения

Критерий (при уровне значимости \alpha):

  • двусторонний критерий — против альтернативы H_1:\; \mathbb{P} \{ x<y \} \neq 1/2
если  X \notin \left[ X_{\alpha/2},\, X_{1-\alpha/2} \right] , то нулевая гипотеза отвергается;
  • односторонний критерий -- против альтернативы H'_1:\; \mathbb{P} \{ x>y \} > 1/2
если  X_> X_{1-\alpha} , то нулевая гипотеза отвергается;

Здесь  X_{\alpha} -- это \alpha-квантиль табличного распределения статистики Ван дер Вардена с параметрами m,\,n.

Асимптотический критерий

Распределение статистики Ван дер Вардена асимптотически нормально с нулевым матожиданием \mathbb{E}X = 0 и дисперсией

 \mathbb{D}X = \frac{mn}{(m + n)(m + n - 1)} \sum_{i = 1}^{m + n} u^2( \frac{i}{m + n + 1} )

Нормальную аппроксимацию статистики Ван дер Вардена можно использовать при  m, n \ge 20.

В этом случае критерии (при уровне значимости \alpha) будет выглядеть следующим образом:

  • двусторонний критерий  \frac{X}{\mathbb{D}X} \notin \left[ u_{\alpha/2},\, u_{1-\alpha/2} \right] , то нулевая гипотеза отвергается;
  • односторонний критерий -- против альтернативы H'_1:\; \mathbb{P} \{ x>y \} > 1/2
если  \frac{X}{\mathbb{D}X}> u_{1-\alpha} , то нулевая гипотеза отвергается;

Свойства критерия Ван дер Вардена

Если выборки подчиняются нормальному распределению, то критерий Ван дер Вардена асимптотически имеет ту же мощность, что и критерий Стьюдента.

При n + m \to \infty критерий Ван дер Вардена не уступает в эффективности критерию Стьюдента

Многовыборочное обобщение критерия Ван дер Вардена

Заданы k выборок: x_1^{n_1}=\left\{x_{11},\dots,x_{1n_1}\right\}, \dots, x_k^{n_k}=\left\{x_{k1},\dots,x_{kn_k}\right\}. Объединённая выборка: z=x_1^{n_1}\cup x_2^{n_2}\cup \dots \cup x_k^{n_k}.

Дополнительные предположения:

  • все выборки простые, объединённая выборка независима;
  • выборки взяты из неизвестных непрерывных распределений F_1(x),\dots,F_k(x).

Статистика критерия: Все N=\sum_{i=1}^k n_i элементов выборок упорядочиваются по возрастанию, через R_{ij} обозначается ранг j-го элемента i-й выборки в полученном вариационном ряду.

Статистика Ван дер Вардена имеет вид

T = \left(\sum_{i = 1}^N u^2( \frac{i}{N + 1} ) \right)^{-1} (N - 1) \sum_{i = 1}^{k} \frac{1}{n_i} \left( \sum_{j=1}^{n_i}  u^2( \frac{R_{ij}}{N + 1} ) \right)^2

Проверяется нулевая гипотеза H_0:\; F_1(x)=\dots=F_k(x) против альтернативы H_1:\; F_1(x)=F_2(x-\Delta_1)=\dots=F_k(x-\Delta_{k-1}).

Если нулевая гипотеза выполнена, то поведение статистики T хорошо описывается распределением хи-квадарат с k - 1 степенью свободы.

Нулевая гипотеза отвергается при уровне значимости \alpha, если T > \chi^2_{1 - \alpha, k - 1}, где \chi^2_{1 - \alpha, k - 1}квантиль уровня 1 -\alpha распределения xи-квадрат с k - 1 степенью свободы.


История

Критерий был предложен Ван дер Варденом в 1953 году.

Литература

  1. Ван дер Варден Б.Л. Математическая статистика/Пер.с нем. — М.:  Иностранная литература,1960 — 450 c.
  2. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.

См. также

различия между двумя выборками

Ссылки

Van_der_Waerden_test - статья в Википедии о многовыборочном критерии Ван дер Вардена

Данная статья является непроверенным учебным заданием.
Студент: Участник:Slimper
Преподаватель: Участник:Vokov
Срок: 08 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты