Критерий Уилкоксона для связных выборок
Материал из MachineLearning.
(это задание) |
м |
||
Строка 30: | Строка 30: | ||
'''Асимптотический критерий:''' | '''Асимптотический критерий:''' | ||
- | [[Изображение:Standard_Normal_Density_-_Right_Critical_Area.png|thumb|Критическая область критерия Уилкоксона для связных выборок.]] | + | [[Изображение:Standard_Normal_Density_-_Right_Critical_Area.png|thumb|Критическая область критерия Уилкоксона для связных выборок (нормальная аппроксимация).]] |
Рассмотрим нормированную и центрированную статистика Уилкоксона: | Рассмотрим нормированную и центрированную статистика Уилкоксона: |
Версия 14:11, 17 мая 2010
|
Критерий Уилкоксона (Вилкоксона) для связных выборок (Wilcoxon signed-rank test) — непараметрический статистический критерий, применяемый для оценки различий между двумя зависимыми выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Пример задачи
Первая выборка - температура пациентов до начала лечения. Вторая - температура в точности этих же пациентов после введения лекарства. Требуется выяснить, повлияло ли применение лекарства на температуру больных. Выборки связные, измерены в порядковой шкале.
Описание критерия
Заданы две выборки .
Дополнительные предположения:
- Обе выборки простые.
- Выборки связные, то есть элементы соответствуют одному и тому же объекту, но измерения сделаны в разные моменты (например, до и после обработки).
Вычисление статистики критерия:
- Рассчитать значения разностей пар двух выборок. Нулевые разности далее не учитываются. - количество ненулевых разностей.
- Проранжировать модули разностей пар в возрастающем порядке.
- Приписать рангам знаки соответствующих им разностей.
- Рассчитать сумму положительных рангов.
Критерий (при уровне значимости ):
Против альтернативы :
- если больше табличного значения критерия знаковых рангов Уилкоксона [1][1] с уровнем значимости и числом степеней свободы , то нулевая гипотеза отвергается.
Асимптотический критерий:
Рассмотрим нормированную и центрированную статистика Уилкоксона:
- ;
асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы ) отвергается, если , где есть -квантиль стандартного нормального распределения.
Аппроксимация начинает работать при .[1]
Поправка:[1]
В 1974 году Р. Иман предложил следующую аппроксимацию, обеспечивающую значительное снижение относительной ошибки для критических значений. Она использует линейную комбинацию нормальной и стьюдентовской квантилей. Положим:
.
Гипотеза отвергается, если , где обозначают соответственно квантили уровня стандартного нормального распределения и распределения Стьюдента с степенью свободы.
Случай совпадающих наблюдений:
При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе нормированной и центрированной статистики Уилкоксона необходимо заменить на следующее:
- где - количество связок, - их размеры. Для элементов связок вычисляется средний ранг.
Другие гипотезы:
средняя разница между значениями пар двух выборок равна заданной константе A.
средняя разница не равна A.
В этом случае из каждой разности вычитается значение A, и дальнейшая обработка выполняется по описанной схеме.
Применение критерия
Метод часто используется для сравнения показателей выборки до и после эксперимента, в частности для проверки гипотезы о равенстве медиан в двух зависимых выборках. Вообще говоря, можно строить примеры, когда медианы выборок различны, а гипотеза верна, поэтому применять критерий для проверки такой гипотезы следует с осторожностью. Аналогичными недостатками (в своей области применения) обладают двухвыборочный критерий Вилкоксона и U-критерий Манна-Уитни.[1]
Критерий является аналогом t-критерия Стьюдента для связанных выборок в случае распределения, отличного от нормального, либо данных, измеренных в количественной шкале. К нормально распределённым совокупностям следует применять более мощный t-критерий.
История
Данный критерий назван именем Френка Уилкоксона (1892-1965). Статья, выпущенная им в 1945 году, содержала также описание аналогичного метода для случая независимых выборок.
Примечания
Литература
- Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 164-166 с.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 457-458 с.
- Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — §4.5.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 222-227 с.
- Холлендер М., Вулф Д. Непараметрические методы статистики. — М.: Финансы и статистика, 1983.
Ссылки
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Критерий Уилкоксона двухвыборочный — аналог критерия для случая независимых выборок.
- Wilcoxon signed-rank test — статья в англоязычной Википедии.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |