Статистический анализ данных (курс лекций, К.В.Воронцов)/2010
Материал из MachineLearning.
м (→Анализ поведения схожих критериев) |
(→Задания) |
||
Строка 68: | Строка 68: | ||
: Студент 17: [[Таблица сопряженности#Критерий "хи-квадрат" для анализа таблиц сопряженности|критерий хи-квадрат]] и [[Точный тест Фишера|точный критерий Фишера]]. <tex>p_1=0.5; \;\; p_2=0\,:\,0.05\,:\,1; \;\;n=10\,:\,2\,:\,50.</tex> | : Студент 17: [[Таблица сопряженности#Критерий "хи-квадрат" для анализа таблиц сопряженности|критерий хи-квадрат]] и [[Точный тест Фишера|точный критерий Фишера]]. <tex>p_1=0.5; \;\; p_2=0\,:\,0.05\,:\,1; \;\;n=10\,:\,2\,:\,50.</tex> | ||
- | * <tex>x^n</tex> | + | * <tex>x^n</tex> — смесь распределений <tex>N(0,1)</tex> и <tex>U[-a,a]</tex> с весами <tex>p</tex> и <tex>1-p</tex> соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит <tex>p</tex>, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного). <br> <tex> H_0\,:\; x \sim N(0,1), \;\;\; H_1\,:\; H_0 </tex> неверна; <br> <tex>p=0\,:\,0.02\,:\,1; \;\; n=10\,:\,5\,:\,100.</tex> |
+ | |||
+ | :Студент 18: [[критерий Шапиро-Уилка]] и [[критерий Колмогорова-Смирнова]]. <tex>a=1.</tex> | ||
+ | :Студент 19: [[критерий омега-квадрат]] и [[критерий Шапиро-Уилка]]. <tex>a=2.</tex> | ||
+ | :Студент 20: [[критерий хи-квадрат]] и [[критерий омега-квадрат]]. <tex>a=5.</tex> | ||
+ | :Студент 21: [[критерий Колмогорова-Смирнова]] и [[критерий хи-квадрат]]. <tex>a=7.</tex> | ||
= Ссылки = | = Ссылки = |
Версия 12:39, 13 сентября 2010
Содержание |
Задание 1. Исследование свойств одномерных статистических критериев на модельных данных
Необходимо провести исследование одного или нескольких классических критериев проверки статистических гипотез. Интерес представляет поведение достигаемого уровня значимости (p-value) как функции размера выборок и параметров распределения. В соответствии с индивидуальными параметрами задания необходимо указанным способом сгенерировать одну или несколько выборок из заданного распределения, выполнить проверку гипотезы при помощи соответствующего критерия, а затем многократно повторить эту процедуру для различных значений параметров. По результатам расчётов необходимо построить требуемые в задании графики, среди которых могут быть следующие:
- график зависимости достигаемого уровня значимости от значений параметров при однократном проведении эксперимента;
- график зависимости достигаемого уровня значимости от значений параметров, усреднённого по большому количеству повторений эксперимента (например, по 100, 500, 1000 повторений);
- график с эмпирическими оценками мощности критерия для разных значений параметров.
В качестве оценки мощности принимается доля отвержений нулевой гипотезы среди всех проверок. То есть, если эксперимент повторялся раз для каждого набора значений параметра, и в из случаев гипотеза была отвергнута на некотором фиксированном уровне значимости (примем ), оценкой мощности будет отношение .
Необходимо сдать: выполненный в LaTex или Microsoft Word отчёт с описанием алгоритма, построенными графиками и выводами (объяснение полученных результатов моделирования, границы применимости критерия и т.д.), а также *.m-файл.
Пример задания
Исследуем поведение классического двухвыборочного критерия Стьюдента для проверки гипотезы однородности против альтернативы сдвига при разных значениях параметров.
При каждом значении выборки для разных значений генерируются независимо.
Задания
Анализ устойчивости критериев к нарушению предположений
- Исследовать устойчивость одновыборочного критерия Стьюдента к нарушению предположения о нормальности данных. — смесь распределений и с весами и соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит , то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного). Для разных значений параметров выборки генерируются независимо.
Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к зашумлению выборки.
- Студент 1:
- Студент 2:
- Студент 3:
- Исследовать устойчивость двухвыборочного критерия Стьюдента для независимых выборок к нарушению предположения о нормальности данных. — смесь распределений и с весами и соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит , то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного). Для разных значений параметров выборки генерируются независимо.
Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к зашумлению одной из выборок.
- Студент 8:
- Студент 9:
- Студент 10:
Анализ чувствительности критериев к редактированию выборки
- Известно, что исключение из выборки определённых наблюдений зачастую может достаточно сильно повлиять на результат анализа. Необходимо исследовать чувствительность одновыборочного критерия критерия Стьюдента к редактированию выборки.
При каждом значении параметра генерируется выборка размера , проводится проверка гипотезы , затем по некоторому правилу из выборки исключается один из элементов, проверка гипотезы повторяется, затем исключается ещё один, и т.д. Обозначим за максимальное число исключённых в таком процессе элементов. Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к редактированию выборки.
- Студент 4: на каждом шаге исключается максимальный элемент.
- Студент 5: на каждом шаге исключается максимальный элемент.
- Студент 6: на каждом шаге исключается минимальный элемент.
- Студент 7: на каждом шаге исключается минимальный элемент.
Анализ поведения схожих критериев
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики вида 1, 2, 3, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий.
- Студент 11: двухвыборочный критерий Стьюдента для независимых выборок и критерий Уилкоксона-Манна-Уитни.
- Студент 12: двухвыборочный критерий Стьюдента для связных выборок и критерий Уилкоксона для связных выборок.
- Студент 13: двухвыборочные критерий Стьюдента для связных и независимых выборок.
- Студент 14: критерий Уилкоксона-Манна-Уитни и медианный критерий.
- Студент 15: критерий Уилкоксона для связных выборок и критерий знаков.
- Студент 16: критерий хи-квадрат и точный критерий Фишера.
- Студент 17: критерий хи-квадрат и точный критерий Фишера.
- — смесь распределений и с весами и соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит , то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного).
неверна;
- Студент 18: критерий Шапиро-Уилка и критерий Колмогорова-Смирнова.
- Студент 19: критерий омега-квадрат и критерий Шапиро-Уилка.
- Студент 20: критерий хи-квадрат и критерий омега-квадрат.
- Студент 21: критерий Колмогорова-Смирнова и критерий хи-квадрат.