Оценка параметров смеси моделей
Материал из MachineLearning.
(→Оценка параметров линейных моделей) |
(→Оценка параметров обобщенно-линейных моделей) |
||
Строка 129: | Строка 129: | ||
</tex> | </tex> | ||
- | ==Оценка параметров обобщенно-линейных моделей== | + | ==Оценка параметров смеси обобщенно-линейных моделей== |
+ | В случае обобщенных линейный моделей функция плотности распределения имеет вид | ||
+ | |||
+ | <tex> | ||
+ | p(\vec{y} | \vec{\theta}) = \exp \left( \vec{T}(\vec{y})^{T} \vec{\eta}(\vec{\theta}) - b(\vec{\theta}) + c(\vec{y}) \right). | ||
+ | </tex> | ||
+ | |||
+ | <tex>M</tex>-шаг алгоритма сводится к максимизации | ||
+ | |||
+ | <tex> | ||
+ | G_k \vec{T}(\vec{y})^{T} \vec{\eta}(\vec{\theta}) - G_k b(\vec{\theta}) + G_k c(\vec{y}) \rightarrow \max_{\vec{\theta}}. | ||
+ | </tex> | ||
+ | |||
+ | Последнее слагаемое не зависит от параметров модели <tex>\theta</tex>, что позволяет упростить функционал | ||
+ | |||
+ | <tex> | ||
+ | G_k \vec{T}(\vec{y})^{T} \vec{\eta}(\vec{\theta}) - G_k b(\vec{\theta}) \rightarrow \max_{\vec{\theta}}. | ||
+ | </tex> | ||
+ | |||
+ | Дальнейшая минимизация зависит от конкретного семейства из обобщенного класса, вида функции <tex>b(\theta)</tex>. | ||
==Оценка параметров смеси экспертов== | ==Оценка параметров смеси экспертов== |
Версия 20:19, 6 декабря 2011
|
Введение
В случае, когда одной модели для описания данных не хватает, используют смеси моделей. Предполагается, что исходная зависимость выражается формулой:
где --- вероятность принадлежности модели .
Далее предполагается, что объекты в выборке независимы и плотность совместного распределения преобразуется в произведение плотностей распределения каждого объекта.
Введем функцию правдоподобия как логарифм плотности вероятности данных.
Обозначим через вероятность того, что объект был порожден компонентой , --- вероятность того, что -объект порожден -компонентой. Каждый объект был порожден какой-либо моделью, по формуле полной вероятности
Для произвольного объекта вероятность его получения моделью по формуле условной вероятности равна:
Подставим это равенство в формулу Байеса для
Для определения параметров смеси необходимо решить задачу максимизации правдоподобия , для этого выпишем функцию Лагранжа:
Приравняем производные по и функции Лагранжа к нулю получим, что:
и оптимизационная задача для нахождения параметров модели имеет вид:
В общем случае задача оптимизации трудна, для её решения используют EM-алгоритм, заключающийся в итеративном повторении двух шагов. На -шаге вычисляются ожидаемые значения вектора скрытых переменных по текущему приближения параметров моделей . На -шаге решается задача максимизации правдоподобия при начальном приближении параметров моделей и значений .
-шагу соответствует выражение
-шаг заключается в оптимизации параметров распределений.
Формула на -шаге может упроститься для случая конкретного распределения. Для упрощения дальнейших рассуждений введем обозначения
Оценка параметров смеси линейных моделей
Линейная модель имеет вид:
где --- вектор нормально распределенных ошибок. В данной постановке вектор является нормальным с математическим ожиданием
, и корреляционной матрицей .
Шаг алгоритма примет следующий вид:
Первое слагаемое не зависит от , его можно не учитывать. Преобразование второго слагаемого дает
Задача квадратична по , решение находится аналитически
Оценка параметров смеси обобщенно-линейных моделей
В случае обобщенных линейный моделей функция плотности распределения имеет вид
-шаг алгоритма сводится к максимизации
Последнее слагаемое не зависит от параметров модели , что позволяет упростить функционал
Дальнейшая минимизация зависит от конкретного семейства из обобщенного класса, вида функции .
Оценка параметров смеси экспертов
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006., p 654 - 676
- Nelder, John; Wedderburn, Robert (1972). "Generalized Linear Models". Journal of the Royal Statistical Society. Series A (General) (Blackwell Publishing)
- Воронцов~К.~В. "Курс лекций по машинному обучению". стр. 32 - 37
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |