Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(+ время проведения спецсеминара БММО)
(+ время проведения спецкурсов Воронцова, Гурова и Местецкого)
Строка 56: Строка 56:
|-
|-
!16:20 – 17:55
!16:20 – 17:55
-
| || || || ||
+
| <small>С/С [[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|ПОСАКРП]], [[Участник:Vokov|К.В.&nbsp;Воронцов]], ауд.&nbsp;615<br>С/К [[Непрерывные морфологические модели и алгоритмы (курс лекций, Л.М. Местецкий)|НММА]], [[Участник:Mest|Л.М.&nbsp;Местецкий]], ауд.&nbsp;609</small> || || || || <small>С/К [[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|ИВКЛ]], [[Участник:Sgur|С.И.&nbsp;Гуров]], ауд.&nbsp;615</small>
|-
|-
!18:05 – 19:40
!18:05 – 19:40
-
| || || <small>С/С [[vetrovsem|БММО]], [[Участник:Dmitry Vetrov|Д.П. Ветров]], ауд. 526Б</small> || ||
+
| <small>С/К [[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|ТНОП]], [[Участник:Vokov|К.В.&nbsp;Воронцов]], ауд.&nbsp;615</small> || || <small>С/С [[vetrovsem|БММО]], [[Участник:Dmitry Vetrov|Д.П.&nbsp;Ветров]], ауд. 526Б</small> || ||
|-
|-
!20:00 – 21:30
!20:00 – 21:30
Строка 72: Строка 72:
|
|
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА -->
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА -->
-
 
+
{{Курс|Режим = {{{1}}}|Название =
 +
'''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]]''', [[Участник:Vokov|К.В. Воронцов]], проходит по понедельникам в ауд. 615, начало в 18-00.
 +
|Описание = Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
 +
}}
 +
{{Курс|Режим = {{{1}}}|Название =
 +
'''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]], проходит по пятницам в ауд. 615, начало в 16-20. Первое занятие состоится 24 февраля.
 +
|Описание =
 +
В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
 +
}}
 +
{{Курс|Режим = {{{1}}}|Название =
 +
'''[[Непрерывные морфологические модели и алгоритмы (курс лекций, Л.М. Местецкий)|Непрерывные морфологические модели и алгоритмы]]''', [[Участник:Mest|Л.М. Местецкий]], проходит по понедельникам в ауд. 609, начало в 16-20. Первое занятие состоится 20 февраля.
 +
|Описание =
 +
Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
 +
}}
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА -->
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА -->
}}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ-->
}}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ-->
Строка 84: Строка 97:
|Описание =
|Описание =
В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
-
}}
 
-
{{Курс|Режим = {{{1}}}|Название =
 
-
'''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]].
 
-
|Описание =
 
-
В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
 
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
Строка 104: Строка 112:
|Описание =
|Описание =
В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
-
}}
 
-
{{Курс|Режим = {{{1}}}|Название =
 
-
'''[[Непрерывные морфологические модели и алгоритмы (курс лекций, Л.М. Местецкий)|Непрерывные морфологические модели и алгоритмы]]''', [[Участник:Mest|Л.М. Местецкий]].
 
-
|Описание =
 
-
Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
 
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
Строка 124: Строка 127:
|Описание =
|Описание =
В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
-
}}
 
-
{{Курс|Режим = {{{1}}}|Название =
 
-
'''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]]''', [[Участник:Vokov|К.В. Воронцов]].
 
-
|Описание = Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
 
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
Строка 151: Строка 150:
'''[[vetrovsem|Байесовские методы машинного обучения]]''', н.с., к.ф.-м.н. [[Участник:Dmitry Vetrov|Д.П.Ветров]], проходит по средам в ауд. 526Б, начало в 18-30.
'''[[vetrovsem|Байесовские методы машинного обучения]]''', н.с., к.ф.-м.н. [[Участник:Dmitry Vetrov|Д.П.Ветров]], проходит по средам в ауд. 526Б, начало в 18-30.
|Описание =
|Описание =
 +
}}
 +
{{Курс|Режим = {{{1}}}|Название =
 +
'''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования]]''', доц., д.ф.-м.н. [[Участник:Vokov|К.В.Воронцов]], проходит по понедельникам в ауд. 615, начало в 16-20.
 +
|Описание =
}}
}}
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА-->
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА-->
Строка 160: Строка 163:
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
'''[[Анализ и оценивание информации представленной в виде изображений]]''', доц., к.ф.-м.н. И.Б.Гуревич.
'''[[Анализ и оценивание информации представленной в виде изображений]]''', доц., к.ф.-м.н. И.Б.Гуревич.
-
|Описание =
 
-
}}
 
-
{{Курс|Режим = {{{1}}}|Название =
 
-
'''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования]]''', доц., д.ф.-м.н. [[Участник:Vokov|К.В.Воронцов]].
 
|Описание =
|Описание =
}}
}}

Версия 12:36, 8 февраля 2012

 
   
Кафедральные курсы
Спецкурсы/спецсеминары
Новости
Расписание
Учебный план
Персональный состав
Материалы
Дипломные работы
Просеминар
  Тел. +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь: Д.П. Ветров
Все контакты

Содержание

Расписание спецкурсов и спецсеминаров в осеннем семестре 2011/2012 уч.г.

Пара Понедельник Вторник Среда Четверг Пятница
8:45 – 10:20
10:30 – 12:05
12:15 – 13:50
14:35 – 16:10
16:20 – 17:55 С/С ПОСАКРП, К.В. Воронцов, ауд. 615
С/К НММА, Л.М. Местецкий, ауд. 609
С/К ИВКЛ, С.И. Гуров, ауд. 615
18:05 – 19:40 С/К ТНОП, К.В. Воронцов, ауд. 615 С/С БММО, Д.П. Ветров, ауд. 526Б
20:00 – 21:30

Расписание основных занятий

Спецкурсы

  • Теория надёжности обучения по прецедентам, К.В. Воронцов, проходит по понедельникам в ауд. 615, начало в 18-00.
    Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
  • Исчисления высказываний классической логики, С.И. Гуров, проходит по пятницам в ауд. 615, начало в 16-20. Первое занятие состоится 24 февраля.
    В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
  • Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий, проходит по понедельникам в ауд. 609, начало в 16-20. Первое занятие состоится 20 февраля.
    Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
  • Логико-статистические модели в распознавании, прогнозировании и интеллектуальном анализе данных, О.В. Сенько.
    Рассматриваются методы интеллектуального анализа данных, основанные на выделении в многомерном пространстве прогностических переменных областей, в которых значения прогнозируемой переменной достоверно отличаются от средних значений по всей выборке. Верификация выявленных закономерностей проводится с помощью рандомизированных перестановочных тестов. Приводятся примеры использования рассматриваемых методов при решении разнообразных прикладных задач.
  • Байесовские методы машинного обучения, Д.П. Ветров, Д.А. Кропотов.
    В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
  • Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус, А.Н. Панкратов, Р.К. Тетуев.
    Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
  • Вычислительные задачи математической биологии, С.А. Махортых, А.Н. Панкратов.
    В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
  • Нестатистические методы анализа данных и классификации, В.В. Рязанов.
    В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
  • Логический анализ данных в распознавании, Е.В. Дюкова.
    Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
  • Извлечение информации из изображений, И.Б. Гуревич.
    В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
  • Структурные методы анализа изображений и сигналов, Д.П. Ветров, Д.А. Кропотов, читается в весеннем семестре.
    В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
  • Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
    Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.
  • Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
    Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.

Спецсеминары

Ссылки

http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.


Личные инструменты