Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары
Материал из MachineLearning.
(Различия между версиями)
(+ время проведения спецсеминара БММО) |
(+ время проведения спецкурсов Воронцова, Гурова и Местецкого) |
||
Строка 56: | Строка 56: | ||
|- | |- | ||
!16:20 – 17:55 | !16:20 – 17:55 | ||
- | | | + | | <small>С/С [[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|ПОСАКРП]], [[Участник:Vokov|К.В. Воронцов]], ауд. 615<br>С/К [[Непрерывные морфологические модели и алгоритмы (курс лекций, Л.М. Местецкий)|НММА]], [[Участник:Mest|Л.М. Местецкий]], ауд. 609</small> || || || || <small>С/К [[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|ИВКЛ]], [[Участник:Sgur|С.И. Гуров]], ауд. 615</small> |
|- | |- | ||
!18:05 – 19:40 | !18:05 – 19:40 | ||
- | | | + | | <small>С/К [[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|ТНОП]], [[Участник:Vokov|К.В. Воронцов]], ауд. 615</small> || || <small>С/С [[vetrovsem|БММО]], [[Участник:Dmitry Vetrov|Д.П. Ветров]], ауд. 526Б</small> || || |
|- | |- | ||
!20:00 – 21:30 | !20:00 – 21:30 | ||
Строка 72: | Строка 72: | ||
| | | | ||
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА --> | |<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ СПЕЦКУРСЫ ТЕКУЩЕГО СЕМЕСТРА --> | ||
- | + | {{Курс|Режим = {{{1}}}|Название = | |
+ | '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]]''', [[Участник:Vokov|К.В. Воронцов]], проходит по понедельникам в ауд. 615, начало в 18-00. | ||
+ | |Описание = Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения. | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Исчисления высказываний классической логики (курс лекций, С.И. Гуров)|Исчисления высказываний классической логики]]''', [[Участник:Sgur|С.И. Гуров]], проходит по пятницам в ауд. 615, начало в 16-20. Первое занятие состоится 24 февраля. | ||
+ | |Описание = | ||
+ | В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями. | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Непрерывные морфологические модели и алгоритмы (курс лекций, Л.М. Местецкий)|Непрерывные морфологические модели и алгоритмы]]''', [[Участник:Mest|Л.М. Местецкий]], проходит по понедельникам в ауд. 609, начало в 16-20. Первое занятие состоится 20 февраля. | ||
+ | |Описание = | ||
+ | Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов. | ||
+ | }} | ||
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА --> | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦКУРСОВ ТЕКУЩЕГО СЕМЕСТРА --> | ||
}}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ--> | }}<noinclude><!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ ВСЕ ОСТАЛЬНЫЕ СПЕЦКУРСЫ--> | ||
Строка 84: | Строка 97: | ||
|Описание = | |Описание = | ||
В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями. | В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями. | ||
- | |||
- | |||
- | |||
- | |||
- | |||
}} | }} | ||
{{Курс|Режим = {{{1}}}|Название = | {{Курс|Режим = {{{1}}}|Название = | ||
Строка 104: | Строка 112: | ||
|Описание = | |Описание = | ||
В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике. | В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике. | ||
- | |||
- | |||
- | |||
- | |||
- | |||
}} | }} | ||
{{Курс|Режим = {{{1}}}|Название = | {{Курс|Режим = {{{1}}}|Название = | ||
Строка 124: | Строка 127: | ||
|Описание = | |Описание = | ||
В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями. | В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями. | ||
- | |||
- | |||
- | |||
- | |||
}} | }} | ||
{{Курс|Режим = {{{1}}}|Название = | {{Курс|Режим = {{{1}}}|Название = | ||
Строка 151: | Строка 150: | ||
'''[[vetrovsem|Байесовские методы машинного обучения]]''', н.с., к.ф.-м.н. [[Участник:Dmitry Vetrov|Д.П.Ветров]], проходит по средам в ауд. 526Б, начало в 18-30. | '''[[vetrovsem|Байесовские методы машинного обучения]]''', н.с., к.ф.-м.н. [[Участник:Dmitry Vetrov|Д.П.Ветров]], проходит по средам в ауд. 526Б, начало в 18-30. | ||
|Описание = | |Описание = | ||
+ | }} | ||
+ | {{Курс|Режим = {{{1}}}|Название = | ||
+ | '''[[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования]]''', доц., д.ф.-м.н. [[Участник:Vokov|К.В.Воронцов]], проходит по понедельникам в ауд. 615, начало в 16-20. | ||
+ | |Описание = | ||
}} | }} | ||
<!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА--> | <!-- КОНЕЦ ПЕРЕЧИСЛЕНИЯ СПЕЦСЕМИНАРОВ ТЕКУЩЕГО СЕМЕСТРА--> | ||
Строка 160: | Строка 163: | ||
{{Курс|Режим = {{{1}}}|Название = | {{Курс|Режим = {{{1}}}|Название = | ||
'''[[Анализ и оценивание информации представленной в виде изображений]]''', доц., к.ф.-м.н. И.Б.Гуревич. | '''[[Анализ и оценивание информации представленной в виде изображений]]''', доц., к.ф.-м.н. И.Б.Гуревич. | ||
- | |||
- | |||
- | |||
- | |||
|Описание = | |Описание = | ||
}} | }} |
Версия 12:36, 8 февраля 2012
|
|
| Тел. +7-495-939-4202 e-mail: Ученый секретарь: Д.П. Ветров Все контакты |
Содержание |
Расписание спецкурсов и спецсеминаров в осеннем семестре 2011/2012 уч.г.
Пара | Понедельник | Вторник | Среда | Четверг | Пятница |
---|---|---|---|---|---|
8:45 – 10:20 | |||||
10:30 – 12:05 | |||||
12:15 – 13:50 | |||||
14:35 – 16:10 | |||||
16:20 – 17:55 | С/С ПОСАКРП, К.В. Воронцов, ауд. 615 С/К НММА, Л.М. Местецкий, ауд. 609 | С/К ИВКЛ, С.И. Гуров, ауд. 615 | |||
18:05 – 19:40 | С/К ТНОП, К.В. Воронцов, ауд. 615 | С/С БММО, Д.П. Ветров, ауд. 526Б | |||
20:00 – 21:30 |
Спецкурсы
- Теория надёжности обучения по прецедентам, К.В. Воронцов, проходит по понедельникам в ауд. 615, начало в 18-00.
- Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
- Исчисления высказываний классической логики, С.И. Гуров, проходит по пятницам в ауд. 615, начало в 16-20. Первое занятие состоится 24 февраля.
- В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
- Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий, проходит по понедельникам в ауд. 609, начало в 16-20. Первое занятие состоится 20 февраля.
- Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
- Логико-статистические модели в распознавании, прогнозировании и интеллектуальном анализе данных, О.В. Сенько.
- Рассматриваются методы интеллектуального анализа данных, основанные на выделении в многомерном пространстве прогностических переменных областей, в которых значения прогнозируемой переменной достоверно отличаются от средних значений по всей выборке. Верификация выявленных закономерностей проводится с помощью рандомизированных перестановочных тестов. Приводятся примеры использования рассматриваемых методов при решении разнообразных прикладных задач.
- Байесовские методы машинного обучения, Д.П. Ветров, Д.А. Кропотов.
- В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
- Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус, А.Н. Панкратов, Р.К. Тетуев.
- Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
- Вычислительные задачи математической биологии, С.А. Махортых, А.Н. Панкратов.
- В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
- Нестатистические методы анализа данных и классификации, В.В. Рязанов.
- В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
- Логический анализ данных в распознавании, Е.В. Дюкова.
- Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
- Извлечение информации из изображений, И.Б. Гуревич.
- В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
- Структурные методы анализа изображений и сигналов, Д.П. Ветров, Д.А. Кропотов, читается в весеннем семестре.
- В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
- Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
- Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.
- Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
- Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
Спецсеминары
- Байесовские методы машинного обучения, н.с., к.ф.-м.н. Д.П.Ветров, проходит по средам в ауд. 526Б, начало в 18-30.
- Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования, доц., д.ф.-м.н. К.В.Воронцов, проходит по понедельникам в ауд. 615, начало в 16-20.
- Анализ данных в метрических пространствах, доц., к.ф.-м.н. А.И.Майсурадзе.
- Анализ и оценивание информации представленной в виде изображений, доц., к.ф.-м.н. И.Б.Гуревич.
- Новые методы в распознавании образов и прогнозировании, доц., к.ф.-м.н. С.И.Гуров.
- Спектральные методы в задачах математической биологии, проф., д.т.н. Ф.Ф.Дедус.
- Логические модели распознавания, доц., д.ф.-м.н. Е.В.Дюкова.
- Алгебрологические методы в задачах классификации и прогнозирования, академик РАН, д.ф.-м.н., профессор Ю.И.Журавлёв.
- Комбинаторные основы теории информации, проф., д.ф.-м.н. В.К.Леонтьев.
- Вычислительные задачи математической биологии и биофизики, доц., к.ф.-м.н. С.А.Махортых, доц., к.ф.-м.н. А.Н.Панкратов.
- Дискретно-непрерывные преобразования изображений в задачах распознавания, проф., д.т.н. Л.М.Местецкий.
- Прикладные методы прогнозирования и анализа данных, доц., д.ф.-м.н. В.В.Рязанов.
- Проблемно-ориентированные схемы распознавания, чл.-корр. РАН, проф. Рудаков Константин Владимирович, доц., к.ф.-м.н. Ю.В.Чехович.
Ссылки
http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.