Критерий Краскела-Уоллиса

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Описание критерия)
Текущая версия (12:16, 19 октября 2013) (править) (отменить)
(Ссылки)
 
Строка 81: Строка 81:
== Ссылки ==
== Ссылки ==
-
*[http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance Wikipedia: Kruskal-Wallis one-way analysis of variance]
+
* [http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance Wikipedia: Kruskal-Wallis one-way analysis of variance]
-
 
+
* [http://ami.nstu.ru/~headrd/seminar/publik_html/Homogeneity_averages.pdf О параметрических и непараметрических критериях проверки гипотез об однородности средних и их мощности на сайте Новосибирского государственного технического университета]
[[Категория: Прикладная статистика]]
[[Категория: Прикладная статистика]]
[[Категория: Статистические тесты]]
[[Категория: Статистические тесты]]
[[Категория:Дисперсионный анализ]]
[[Категория:Дисперсионный анализ]]

Текущая версия

Критерий Краскела-Уоллиса предназначен для проверки равенства средних нескольких выборок. Данный критерий является многовыборочным обобщением критерия Уилкоксона-Манна-Уитни. Критерий Краскела-Уоллиса является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения. Известен так же под названиями: критерий Крускала-Уоллиса, H-критерий Краскела-Уоллиса, Kruskal-Wallis one-way analysis of variance, Kruskal-Wallis test.

Содержание

Примеры задач

Пример 1. Проходит чемпионат мира по футболу. Первая выборка — опрос болельщиков с вопросом "Каковы шансы на победу сборной России?" до начала чемпионата. Вторая выборка — после первой игры, третья — после второго матча и т.д. Значения в выборках — шансы России на победу по десятибальной шкале (1 — никаких перспектив, 10 — отвезти в Россию кубок — дело времени). Требуется проверить, зависят ли результаты опросов от хода чемпионата.

Пример 2. Выборка состоит из пациентов, у которых был диагностирован неизлечимый рак какого-либо органа. Всем им в качестве поддерживающей терапии был назначен к приёму витамин C (считалось, что он может способствовать выздоровлению раковых больных). Приведены данные об остаточной продолжительности жизни пациентов в днях. То есть выборка состоит из пар вида (пораженный орган, число дней), разделяясь на несколько числовых подвыборок, каждая из которых соответствует своему пораженному органу.

Требуется проверить, отличается ли остаточная продолжительность жизни в зависимости от того, какой орган поражён раковой опухолью.

Описание критерия

Заданы k выборок: X_1=\left\{x_1^1,\dots,x_1^{n_1}\right\}, \dots, X_k=\left\{x_k^1,\dots,x_k^{n_k}\right\}. Объединённая выборка: X=X_1\cup X_2\cup \dots \cup X_k.

Дополнительные предположения:

  • все k выборок простые, объединённая выборка независима;
  • выборки взяты из неизвестных непрерывных распределений F_1(x),\dots,F_k(x).

Проверяется нулевая гипотеза H_0:\; F_1(x)=\dots=F_k(x) при альтернативе H_1:\; F_1(x)=F_2(x-\Delta_1)=\dots=F_k(x-\Delta_{k-1}).

Упорядочим все N=\sum_{i=1}^k n_i элементов выборок по возрастанию и обозначим R_i^j ранг j-го элемента i-й выборки в полученном вариационном ряду.

Статистика критерия Краскела-Уоллиса для проверки гипотезы о наличии сдвига в параметрах положения сравниваемых выборок имеет вид

H=\sum_{i=1}^k \left( 1-\frac{n_i}{N} \right) \left\{ \frac{\bar{R}_i-\frac{N+1}{2}}{\sqrt{\frac{(N-n_i)(N+1)}{12n_i}}} \right\} ^{\frac{1}{2}}=\frac{12}{N(N+1)}\sum_{i=1}^k n_i \left( \bar{R}_i-\frac{N+1}{2} \right) ^2 = \frac{12}{N(N+1)} \sum_{i=1}^k \frac{R_i^2}{n_i}-3(N+1),

где R_i=\sum_{j=1}^{n_i} R_i^j;\: \bar{R}_i=\frac{R_i}{n_i}.

При наличии связанных рангов (т.е. когда совпадают значения величин из разных выборок и им присваиваются одинаковые средние ранги) необходимо использовать модифицированную статистику H*=H\left\{1-\left(\sum_{j=1}^q \frac{T_j}{N^3-N} \right) \right\} ^{-1}, где T_j=t_j^3-t_j;\; t_j — размер j-й группы одинаковых элементов; q — количество групп одинаковых элементов.

Гипотеза сдвига отклоняется на уровне значимости \alpha, если H \ge H_{\alpha}, где H_{\alpha} — критическое значение, при k \le 5 и n_i \le 8 вычисляемое по таблицам. При больших значениях применимы различные аппроксимации.

При n_i \ge 15 справедлива аппроксимация распределения статистики H \chi_{k-1}^2-распределением с k-1 степенями свободы, т.е. нулевая гипотеза отклоняется, если H \ge \chi_{k-1,\alpha}^2.

Аппроксимация Краскела-Уоллиса

Пусть

M=\frac{N^3-\sum_{i=1}^k n_i^3}{N(N+1)};\; \nu_1=(k-1)\frac{(k-1)(M-k+1)-V}{\frac{1}{2}MV}; \nu_2==\frac{M-k+1}{k-1}\nu_1;\; V=2(k-1)-\frac{2\left\{3k^2-6k+N(2k^2-6k+1)\right\}}{5N(N+1)}-\frac{6}{5} \sum_{i=1}^k \frac{1}{n_i}.

Тогда статистика

F=\frac{H(M-k+1)}{(k-1)(M-H)}

будет иметь при отсутствии сдвига распределение Фишера с \nu_1 и \nu_2 степенями свободы. Таким образом, нулевая гипотеза отклоняется с достоверностью \alpha, если F>F_{\alpha}(\nu_1,\nu_2).

Аппроксимация Имана-Давенпорта

В соответстви с ней нулевая гипотеза сдвига отклоняется с достоверностью \alpha, если J \ge J_{\alpha}, где

M=\frac{H}{2}\left(1+\frac{N-k}{N-1-H}\right);\; J_{\alpha}=\left\{(k-1)F_{\alpha}(k-1;N-l)+\chi_{\alpha}^2(k-1)\right},

\chi_{\alpha}^2(k-1) — критическое значение статистики хи-квадрат.

Это более точная аппроксимация, чем аппроксимация Краскела-Уоллиса.

Критические значения критерия Краскела-Уоллиса при k<=5, n<=8



Критические значения критерия Краскела-Уоллиса при k<=6, n<=8


См. также

Литература

  1. Kruskal W. H. and Wallis W. A. Use of ranks in one-criterion variance analysis. // Journal of the American Statistical Association. — 1952, 47 №260. — Pp. 583–621.
  2. Ликеш И., Ляга Й. Основные таблицы математической статистики. — М.: Финансы и статистика, 1985.
  3. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 466-468 с.

Ссылки

Личные инструменты