Мультиномиальное распределение независимых случайных величин
Материал из MachineLearning.
Vitsemgol (Обсуждение | вклад)
(Новая: '''Мультиномиа́льное (полиномиа́льное) распределе́ние''' в теории вероятностей ...)
К следующему изменению →
Версия 12:08, 29 октября 2013
Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.
Определение
Пусть - независимые одинаково распределённые случайные величины, такие, что их распределение задаётся функцией вероятности:
- .
Интуитивно событие означает, что испытание с номером привело к исходу . Пусть случайная величина равна количеству испытаний, приведших к исходу :
- .
Тогда распределение вектора имеет функцию вероятности , где
Вектор средних и матрица ковариации
Математическое ожидание случайной величины имеет вид: . Диагональные элементы матрицы ковариации являются дисперсиями биномиальных случайных величин, а следовательно
- .
Для остальных элементов имеем
- .
Ранг матрицы ковариации мультиномиального распределения равен .