Мультиномиальное распределение независимых случайных величин
Материал из MachineLearning.
(→Вектор средних и матрица ковариации) |
(→Определение) |
||
Строка 14: | Строка 14: | ||
\right., \quad \mathbf{y} = (y_1,\ldots, y_k)^{\top} \in \mathbb{N}^k_0</tex>, | \right., \quad \mathbf{y} = (y_1,\ldots, y_k)^{\top} \in \mathbb{N}^k_0</tex>, | ||
где | где | ||
- | :<tex>{n \choose {y_1 \ldots y_k}} \equiv \frac{n!}{y_1! \ldots y_k!}</tex> — [[мультиномиальный коэффициент]]. | + | :<tex>{n \choose {y_1 \ldots y_k}} \equiv \frac{n!}{y_1! \ldots y_k!}</tex> — [[мультиномиальный коэффициент]] (полиномиальный коэффициент). |
+ | |||
==Вектор средних и матрица ковариации== | ==Вектор средних и матрица ковариации== | ||
Версия 12:25, 29 октября 2013
Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.
Определение
Пусть - независимые одинаково распределённые случайные величины, такие, что их распределение задаётся функцией вероятности:
- .
Интуитивно событие означает, что испытание с номером привело к исходу . Пусть случайная величина равна количеству испытаний, приведших к исходу :
- .
Тогда распределение вектора имеет функцию вероятности , где
- — мультиномиальный коэффициент (полиномиальный коэффициент).
Вектор средних и матрица ковариации
Математическое ожидание случайной величины имеет вид: . Диагональные элементы матрицы ковариации являются дисперсиями биномиальных случайных величин, а следовательно
- .
Для остальных элементов имеем
- .
Ранг матрицы ковариации мультиномиального распределения равен .
См. также
- Мультиномиальное распределение зависимых случайных величин
- Мультиномиальное распределение с равновероятными успехами испытаний Бернулли
- Парадоксы мультиномиального распределения
- Биномиальное распределение одной случайной величины
- Биномиальное распределение двух случайных величин
- Биномиальное распределение с равновероятными успехами испытаний Бернулли
- Парадоксы биномиального распределения